scholarly journals Analyzing the Urban Heat Island Characteristics and Mitigation Strategies in Eight Arid and Semi-Arid Cities

Author(s):  
Ammar Abulibdeh

The aim of the study is two fold: first, the study analyzes the formation of the urban heat island (UHI) in eight different cities in arid and semi-arid region. The analysis is based on land cover / land use (LCLU) classification (urban, green, and bare areas). Second, the study synthesizes the mitigation strategies to reduce the land surface temperature (LST) and hence the UHI effects in the arid and semi-arid cities. The study found that the bare areas have the highest mean LST compared to the urban and green areas. Furthermore, the study found that the LST varies in each of the LCLU categories and hence some areas of the three categories have LST lower or higher than the other categories and hence not always one category has the highest LST compared to the other categories. The outcomes of this study may have key implications for urban planners seeking to mitigate urban heat island effects in arid and semi-arid urban areas.

2021 ◽  
Vol 80 (7) ◽  
Author(s):  
Ammar Abulibdeh

AbstractThe aim of the study is, therefore, to analyze the formation of the UHIs in eight different cities in arid and semi-arid regions. The analysis is based on land cover (LC) classification (urban, green, and bare areas). The study found that bare areas had the highest mean LST values compared to the urban and green areas. The results show that the difference in temperatures between the bare areas and the urban areas ranges between 1 and 2 °C, between the bare areas and green areas ranges between 1 and 7 °C, and between the urban areas and green areas ranges between 1 and 5 °C. Furthermore, the LST values varied for each of the LULC categories, and hence some areas in the three categories had lower or higher LST values than in other categories. Hence, one category may not always have the highest LST value compared to other categories. The outcomes of this study may, therefore, have critical implications for urban planners who seek to mitigate UHI effects in arid and semi-arid urban areas.


2021 ◽  
Author(s):  
William J. Keat ◽  
Elizabeth J. Kendon ◽  
Sylvia I. Bohnenstengel

AbstractIncreasing summer temperatures in a warming climate will increase the exposure of the UK population to heat-stress and associated heat-related mortality. Urban inhabitants are particularly at risk, as urban areas are often significantly warmer than rural areas as a result of the urban heat island phenomenon. The latest UK Climate Projections include an ensemble of convection-permitting model (CPM) simulations which provide credible climate information at the city-scale, the first of their kind for national climate scenarios. Using a newly developed urban signal extraction technique, we quantify the urban influence on present-day (1981–2000) and future (2061–2080) temperature extremes in the CPM compared to the coarser resolution regional climate model (RCM) simulations over UK cities. We find that the urban influence in these models is markedly different, with the magnitude of night-time urban heat islands overestimated in the RCM, significantly for the warmest nights (up to $$4~^{\circ }$$ 4 ∘ C), while the CPM agrees much better with observations. This improvement is driven by the improved land-surface representation and more sophisticated urban scheme MORUSES employed by the CPM, which distinguishes street canyons and roofs. In future, there is a strong amplification of the urban influence in the RCM, whilst there is little change in the CPM. We find that future changes in soil moisture play an important role in the magnitude of the urban influence, highlighting the importance of the accurate representation of land-surface and hydrological processes for urban heat island studies. The results indicate that the CPM provides more reliable urban temperature projections, due at least in part to the improved urban scheme.


2021 ◽  
Vol 13 (18) ◽  
pp. 3684
Author(s):  
Yingying Ji ◽  
Jiaxin Jin ◽  
Wenfeng Zhan ◽  
Fengsheng Guo ◽  
Tao Yan

Plant phenology is one of the key regulators of ecosystem processes, which are sensitive to environmental change. The acceleration of urbanization in recent years has produced substantial impacts on vegetation phenology over urban areas, such as the local warming induced by the urban heat island effect. However, quantitative contributions of the difference of land surface temperature (LST) between urban and rural (ΔLST) and other factors to the difference of spring phenology (i.e., the start of growing season, SOS) between urban and rural (ΔSOS) were rarely reported. Therefore, the objective of this study is to explore impacts of urbanization on SOS and distinguish corresponding contributions. Using Hangzhou, a typical subtropical metropolis, as the study area, vegetation index-based phenology data (MCD12Q2 and MYD13Q1 EVI) and land surface temperature data (MYD11A2 LST) from 2006–2018 were adopted to analyze the urban–rural gradient in phenology characteristics through buffers. Furthermore, we exploratively quantified the contributions of the ΔLST to the ΔSOS based on a temperature contribution separation model. We found that there was a negative coupling between SOS and LST in over 90% of the vegetated areas in Hangzhou. At the sample-point scale, SOS was weakly, but significantly, negatively correlated with LST at the daytime (R2 = 0.2 and p < 0.01 in rural; R2 = 0.14 and p < 0.05 in urban) rather than that at nighttime. Besides, the ΔSOS dominated by the ΔLST contributed more than 70% of the total ΔSOS. We hope this study could help to deepen the understanding of responses of urban ecosystem to intensive human activities.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Teri Knight ◽  
Sian Price ◽  
Diana Bowler ◽  
Amy Hookway ◽  
Sian King ◽  
...  

Abstract Background This review updates a systematic review published in 2010 (http://www.environmentalevidence.org/completed-reviews/how-effective-is-greening-of-urban-areas-in-reducing-human-exposure-to-ground-level-ozone-concentrations-uv-exposure-and-the-urban-heat-island-effect) which addressed the question: How effective is ‘greening’ of urban areas in reducing human exposure to ground-level ozone concentrations, UV exposure and the ‘urban heat island effect’? Methods Searches of multiple databases and journals for relevant published articles and grey literature were conducted. Organisational websites were searched for unpublished articles. Eligibility criteria were applied at title, abstract and full text and included studies were critically appraised. Consistency checks of these processes were undertaken. Pre-defined data items were extracted from included studies. Quantitative synthesis was performed through meta-analysis and narrative synthesis was undertaken. Review findings 308 studies were included in this review. Studies were spread across all continents and climate zones except polar but were mainly concentrated in Europe and temperate regions. Most studies reported on the impact of urban greening on temperature with fewer studies reporting data on ground-level UV radiation, ozone concentrations (or precursors) or public health indicators. The findings of the original review were confirmed; urban green areas tended to be cooler than urban non-green areas. Air temperature under trees was on average 0.8 °C cooler but treed areas could be warmer at night. Cooling effect showed tree species variation. Tree canopy shading was a significant effect modifier associated with attenuation of solar radiation during the day. Urban forests were on average 1.6 °C cooler than comparator areas. Treed areas and parks and gardens were associated with improved human thermal comfort. Park or garden cooling effect was on average 0.8 °C and trees were a significant influence on this during the day. Park or garden cooling effect extended up to 1.25 kms beyond their boundaries. Grassy areas were cooler than non-green comparators, both during daytime and at night, by on average 0.6 °C. Green roofs and walls showed surface temperature cooling effect (2 and 1.8 °C on average respectively) which was influenced by substrate water content, plant density and cover. Ground-level concentrations of nitrogen oxides were on average lower by 1.0 standard deviation units in green areas, with tree species variation in removal of these pollutants and emission of biogenic volatile organic compounds (precursors of ozone). No clear impact of green areas on ground level ozone concentrations was identified. Conclusions Design of urban green areas may need to strike a balance between maximising tree canopy shading for day-time thermal comfort and enabling night-time cooling from open grassy areas. Choice of tree species needs to be guided by evapotranspiration potential, removal of nitrogen oxides and emission of biogenic volatile organic compounds. Choice of plant species and substrate composition for green roofs and walls needs to be tailored to local thermal comfort needs for optimal effect. Future research should, using robust study design, address identified evidence gaps and evaluate optimal design of urban green areas for specific circumstances, such as mitigating day or night-time urban heat island effect, availability of sustainable irrigation or optimal density and distribution of green areas. Future evidence synthesis should focus on optimal design of urban green areas for public health benefit.


Urbani izziv ◽  
2019 ◽  
Vol 2 (30) ◽  
pp. 105-112
Author(s):  
Gordana Kaplan

Rapid urbanization has several negative effects on both the environment and human health. Urbanization has also become an important contributor to global warming. One of these effects is the urban heat island (UHI), which is caused by human activities and defined as the temperature difference between urban and surrounding rural areas. With rapid urbanization in the past few decades, Skopje has experienced remarkable UHI effects. To investigate the roles of built-up and green areas in a surface UHI, this article uses satellite data from Landsat ETM+ to analyse the land surface temperature and high-resolution Planet Scope DOVE data to analyse built-up and green areas. For geostatistical analyses, seventeen randomly selected subareas in Skopje were used. The results show a significant correlation between the UHI and built-up areas, and strong correlation between green areas and areas not affected by the UHI, indicating that the UHI effect can be significantly weakened with additional green areas. One of the significant findings in the study is the ideal proportion of built-up (40%) and green areas (60%), where the UHI effect is weak, or in some cases prevented. For future studies, investigating other factors that may contribute to the UHI phenomenon is suggested.


2021 ◽  
Author(s):  
A S M Shanawaz Uddin ◽  
Najeebullah Khan ◽  
Abu Reza Md. Towfiqul I ◽  
Mohammad Kamruzzaman ◽  
Shamsuddin Shahid

Abstract Urbanization changes the local environment, resulting in urban heat island (UHI) effect and deteriorating human life quality. Knowledge of urban environments and temperature changes is important to outline the urban planning process for mitigation of UHI effect. The study aimed to assess the changes in urban areas and UHI effects in Dhaka city, Bangladesh from 2001to 2017, using Moderate Resolution Imaging Spectroradiometer (MODIS) daily day- and nighttime land surface temperature (LST) data from 2001to 2017. The expansion of the city was calculated using the city clustering algorithm (CCA). The temperature of the identified urbanized area was analyzed and compared with the adjacent regions. The changes in urban temperature were estimated using non-parametric statistical methods. The results showed that the Dhaka city area has grown by 19.12% and its inhabitants by 76.65% during 2001–2017. Urban expansion and dense settlements caused an increase in average temperature in some areas of Dhaka city nearly 3°C compared to that at its boundary. The day and night temperatures at Dhaka city's warmest location were nearly 7 and 5ºC, respectively, more than the coolest point outside the city. The city's annual average day- and nighttime temperature was increasing at a rate of 0.03° and 0.023°C/year over the period 2001–2017. The rising temperature would increase the UHI effect in the future, which combined with high humidity, may cause a significant increase in public health risk in the city if mitigation practices are not followed.


2013 ◽  
Vol 52 (9) ◽  
pp. 2051-2064 ◽  
Author(s):  
Dan Li ◽  
Elie Bou-Zeid

AbstractCities are well known to be hotter than the rural areas that surround them; this phenomenon is called the urban heat island. Heat waves are excessively hot periods during which the air temperatures of both urban and rural areas increase significantly. However, whether urban and rural temperatures respond in the same way to heat waves remains a critical unanswered question. In this study, a combination of observational and modeling analyses indicates synergies between urban heat islands and heat waves. That is, not only do heat waves increase the ambient temperatures, but they also intensify the difference between urban and rural temperatures. As a result, the added heat stress in cities will be even higher than the sum of the background urban heat island effect and the heat wave effect. Results presented here also attribute this added impact of heat waves on urban areas to the lack of surface moisture in urban areas and the low wind speed associated with heat waves. Given that heat waves are projected to become more frequent and that urban populations are substantially increasing, these findings underline the serious heat-related health risks facing urban residents in the twenty-first century. Adaptation and mitigation strategies will require joint efforts to reinvent the city, allowing for more green spaces and lesser disruption of the natural water cycle.


Author(s):  
Van Tran Thi ◽  
Bao Ha Duong Xuan ◽  
Mai Nguyen Thi Tuyet

In urban area, one of the great problem is the rise of temperature, which leads to form the urban heat island effect. This paper refers to the trend of the urban surface temperature extracted from the Landsat images from which to consider changes in the formation of surface urban heat island for the north of Ho Chi Minh city in period 1995-2015. Research has identified land surface temperature from thermal infrared band, according to the ability of the surface emission based on characteristics of normalized difference vegetation index NDVI. The results showed that temperature fluctuated over the city with a growing trend and the gradual expansion of the area of the high-temperature zone towards the suburbs. Within 20 years, the trend of the formation of surface urban heat island with two typical locations showed a clear difference between the surface temperature of urban areas and rural areas with space expansion of heat island in 4 times in 2015 compared to 1995. An extreme heat island located in the inner city has an area of approximately 18% compared to the total area of the region. Since then, the solution to reduce the impact of urban heat island has been proposed, in order to protect the urban environment and the lives of residents in Ho Chi Minh City becoming better


2021 ◽  
Author(s):  
Lorenzo Mentaschi ◽  
Gregory Duveiller ◽  
Grazia Zulian ◽  
Christina Corbane ◽  
Martino Pesaresi ◽  
...  

Abstract Surface temperatures are generally higher in cities than in rural surroundings. This phenomenon, known as surface urban heat island (SUHI), increases the risk of heat-related human illnesses and mortality. Past global studies analysed this phenomenon aggregated at city scale or over seasonal and annual time periods, while human impacts strongly depend on shorter term heat stress experienced locally. Here we develop a global long-term high-resolution dataset of daytime SUHI as urban-rural surface temperature differences. Our results show that across urban areas worldwide over the period 2003-2020, 3-day SUHI extremes are on average more than twice as high as the warm-season median SUHI, with local exceedances up to 10 K. Over this period, SUHI extremes have increased more rapidly than warm-season medians, and averaged worldwide are now 1.04 K or 31% higher compared to 2003. This can be linked with increasing urbanisation, more frequent heatwaves, and greening of the earth, processes that are all expected to continue in the coming decades. Within many cities there are hotspots where extreme SUHI intensity is 10 to 15 K higher compared to relatively cooler city parts. Given the limited human adaptability to heat stress, our results advocate for mitigation strategies targeted at reducing SUHI extremes in the most vulnerable and exposed city neighbourhoods.


Author(s):  
Safdar Ali Shirazi ◽  
Khadija Shakrullah ◽  
Saadia Sultan Wahla ◽  
Mareena Khurshid

The aim of present study is to evaluate and assess the impact of built-up areas on development of the urbanheat island (UHI).The study mainly focused on Lahore, which is one of the mega cities of Pakistan. In terms ofpopulation size, Lahore is the second largest city of Pakistan with 11.13 million inhabitants. The geospatial techniques(Remote Sensing and Geographical Information System) along with statistical applications were applied to find out theLand Cover Land Uses changes and consequent development of builtup areas over the period of 2000 and 2015. Tostudy the UHI, the meteorological data of each 30 minutes for 36 days starting from 30th June 2015 to 4th August 2015were collected through direct on site observation by using digital weather station. The results of UHI were crosschecked by obtaining land surface temperature by using thermal infrared (TIR) band 6 of the Landsat-7 TM. The resultsshow that the LCLU and built environment have direct impact on development of UHI. The areas where there wasmore vegetation cover had less temperature while in urban areas, the temperature was measured higher. Over the periodof 36 days, the average UHI remained 5.5°C and the highest intensity of UHI was observed as 8.3°C thus augmentedresearch rationale. The study suggests establishment of a thick network of automatic weather stations in Lahore togauge the urban heat island intensity and to plant indigenous trees on vacant swaths and develop urban forest tomitigate city’s rising temperature.


Sign in / Sign up

Export Citation Format

Share Document