scholarly journals Analysis of urban heat island characteristics and mitigation strategies for eight arid and semi-arid gulf region cities

2021 ◽  
Vol 80 (7) ◽  
Author(s):  
Ammar Abulibdeh

AbstractThe aim of the study is, therefore, to analyze the formation of the UHIs in eight different cities in arid and semi-arid regions. The analysis is based on land cover (LC) classification (urban, green, and bare areas). The study found that bare areas had the highest mean LST values compared to the urban and green areas. The results show that the difference in temperatures between the bare areas and the urban areas ranges between 1 and 2 °C, between the bare areas and green areas ranges between 1 and 7 °C, and between the urban areas and green areas ranges between 1 and 5 °C. Furthermore, the LST values varied for each of the LULC categories, and hence some areas in the three categories had lower or higher LST values than in other categories. Hence, one category may not always have the highest LST value compared to other categories. The outcomes of this study may, therefore, have critical implications for urban planners who seek to mitigate UHI effects in arid and semi-arid urban areas.

Author(s):  
Ammar Abulibdeh

The aim of the study is two fold: first, the study analyzes the formation of the urban heat island (UHI) in eight different cities in arid and semi-arid region. The analysis is based on land cover / land use (LCLU) classification (urban, green, and bare areas). Second, the study synthesizes the mitigation strategies to reduce the land surface temperature (LST) and hence the UHI effects in the arid and semi-arid cities. The study found that the bare areas have the highest mean LST compared to the urban and green areas. Furthermore, the study found that the LST varies in each of the LCLU categories and hence some areas of the three categories have LST lower or higher than the other categories and hence not always one category has the highest LST compared to the other categories. The outcomes of this study may have key implications for urban planners seeking to mitigate urban heat island effects in arid and semi-arid urban areas.


2021 ◽  
Vol 13 (18) ◽  
pp. 3684
Author(s):  
Yingying Ji ◽  
Jiaxin Jin ◽  
Wenfeng Zhan ◽  
Fengsheng Guo ◽  
Tao Yan

Plant phenology is one of the key regulators of ecosystem processes, which are sensitive to environmental change. The acceleration of urbanization in recent years has produced substantial impacts on vegetation phenology over urban areas, such as the local warming induced by the urban heat island effect. However, quantitative contributions of the difference of land surface temperature (LST) between urban and rural (ΔLST) and other factors to the difference of spring phenology (i.e., the start of growing season, SOS) between urban and rural (ΔSOS) were rarely reported. Therefore, the objective of this study is to explore impacts of urbanization on SOS and distinguish corresponding contributions. Using Hangzhou, a typical subtropical metropolis, as the study area, vegetation index-based phenology data (MCD12Q2 and MYD13Q1 EVI) and land surface temperature data (MYD11A2 LST) from 2006–2018 were adopted to analyze the urban–rural gradient in phenology characteristics through buffers. Furthermore, we exploratively quantified the contributions of the ΔLST to the ΔSOS based on a temperature contribution separation model. We found that there was a negative coupling between SOS and LST in over 90% of the vegetated areas in Hangzhou. At the sample-point scale, SOS was weakly, but significantly, negatively correlated with LST at the daytime (R2 = 0.2 and p < 0.01 in rural; R2 = 0.14 and p < 0.05 in urban) rather than that at nighttime. Besides, the ΔSOS dominated by the ΔLST contributed more than 70% of the total ΔSOS. We hope this study could help to deepen the understanding of responses of urban ecosystem to intensive human activities.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Teri Knight ◽  
Sian Price ◽  
Diana Bowler ◽  
Amy Hookway ◽  
Sian King ◽  
...  

Abstract Background This review updates a systematic review published in 2010 (http://www.environmentalevidence.org/completed-reviews/how-effective-is-greening-of-urban-areas-in-reducing-human-exposure-to-ground-level-ozone-concentrations-uv-exposure-and-the-urban-heat-island-effect) which addressed the question: How effective is ‘greening’ of urban areas in reducing human exposure to ground-level ozone concentrations, UV exposure and the ‘urban heat island effect’? Methods Searches of multiple databases and journals for relevant published articles and grey literature were conducted. Organisational websites were searched for unpublished articles. Eligibility criteria were applied at title, abstract and full text and included studies were critically appraised. Consistency checks of these processes were undertaken. Pre-defined data items were extracted from included studies. Quantitative synthesis was performed through meta-analysis and narrative synthesis was undertaken. Review findings 308 studies were included in this review. Studies were spread across all continents and climate zones except polar but were mainly concentrated in Europe and temperate regions. Most studies reported on the impact of urban greening on temperature with fewer studies reporting data on ground-level UV radiation, ozone concentrations (or precursors) or public health indicators. The findings of the original review were confirmed; urban green areas tended to be cooler than urban non-green areas. Air temperature under trees was on average 0.8 °C cooler but treed areas could be warmer at night. Cooling effect showed tree species variation. Tree canopy shading was a significant effect modifier associated with attenuation of solar radiation during the day. Urban forests were on average 1.6 °C cooler than comparator areas. Treed areas and parks and gardens were associated with improved human thermal comfort. Park or garden cooling effect was on average 0.8 °C and trees were a significant influence on this during the day. Park or garden cooling effect extended up to 1.25 kms beyond their boundaries. Grassy areas were cooler than non-green comparators, both during daytime and at night, by on average 0.6 °C. Green roofs and walls showed surface temperature cooling effect (2 and 1.8 °C on average respectively) which was influenced by substrate water content, plant density and cover. Ground-level concentrations of nitrogen oxides were on average lower by 1.0 standard deviation units in green areas, with tree species variation in removal of these pollutants and emission of biogenic volatile organic compounds (precursors of ozone). No clear impact of green areas on ground level ozone concentrations was identified. Conclusions Design of urban green areas may need to strike a balance between maximising tree canopy shading for day-time thermal comfort and enabling night-time cooling from open grassy areas. Choice of tree species needs to be guided by evapotranspiration potential, removal of nitrogen oxides and emission of biogenic volatile organic compounds. Choice of plant species and substrate composition for green roofs and walls needs to be tailored to local thermal comfort needs for optimal effect. Future research should, using robust study design, address identified evidence gaps and evaluate optimal design of urban green areas for specific circumstances, such as mitigating day or night-time urban heat island effect, availability of sustainable irrigation or optimal density and distribution of green areas. Future evidence synthesis should focus on optimal design of urban green areas for public health benefit.


Author(s):  
Alfiyah Nur Fitriani ◽  
Kania Dewi ◽  
Laras Tursilowati

Urban Heat Island is usually caused by Land use Land-Cover Changes (LULCC), including in Jakarta-Indonesia. Rapid development in Jakarta causes green open space to decrease and increase surface temperature in urban areas. In addition, Urban Heat Island also affects the spread of pollutants due to increased turbulence. Therefore, this study aims to find the link between temperature rise in DKI Jakarta which is influenced by land cover changes to pollutant spread such as NO2, PM10, and O3. This research begins with data processing observation of average temperature of DKI Jakarta area with meteorology station Tangerang, Banten for spatial calculation from year 2011-2016. In addition, LANDSAT 8 satellite image data is processed for spatial land and temperature encapsulation with Remote Sensing software from 2013-2015. As a result, in 2013 and 2015 there is a reduction in the area of vegetation that turns into non-vegetation (residential and industrial areas) that affect the temperature of the DKI Jakarta region is increasing. After that, sought the linkage between Urban Heat Island and the spread of pollutant concentrations in DKI Jakarta in 2013 and 2015. As a result, the increase of Jakarta area temperature, especially in pollutant observation area at five points, influenced the distribution of pollutant NO2, O3, and PM10 pollutant concentration balance with the dominan area such as roadside, industry, settlement in the time and area study in DKI Jakarta.


Geografie ◽  
2019 ◽  
Vol 124 (1) ◽  
pp. 83-101 ◽  
Author(s):  
Ján Feranec ◽  
Monika Kopecká ◽  
Daniel Szatmári ◽  
Juraj Holec ◽  
Pavel Šťastný ◽  
...  

The urban heat island phenomenon occurs in urban areas. It is characterized by increased temperature of both the air and ground surface, compared to the surrounding rural landscape, and is a typical feature of the urban climate. As this phenomenon may affect quality of life in the cities, a variety of scientific studies have been carried out. The article provides a review and evaluation of selected published studies devoted to the issue of the urban heat island, from the point of view of the application of land cover and land use data in the 3-dimensional microscale urban model. Part of the review brings into focus the MUKLIMO model, which computes the atmospheric conditions in urban landscapes and predicts thermal and other climatic characteristics. Evaluated studies confirmed the correlation between the land cover/land use classes and occurrence of the urban heat islands, i.e. a higher percentage of impermeable surfaces within the urban heat island causes more intensive thermal manifestation. The urban heat island effect diminishes when there are less impermeable surfaces and a greater representation of urban greenery in land cover/land use classes.


2013 ◽  
Vol 52 (9) ◽  
pp. 2051-2064 ◽  
Author(s):  
Dan Li ◽  
Elie Bou-Zeid

AbstractCities are well known to be hotter than the rural areas that surround them; this phenomenon is called the urban heat island. Heat waves are excessively hot periods during which the air temperatures of both urban and rural areas increase significantly. However, whether urban and rural temperatures respond in the same way to heat waves remains a critical unanswered question. In this study, a combination of observational and modeling analyses indicates synergies between urban heat islands and heat waves. That is, not only do heat waves increase the ambient temperatures, but they also intensify the difference between urban and rural temperatures. As a result, the added heat stress in cities will be even higher than the sum of the background urban heat island effect and the heat wave effect. Results presented here also attribute this added impact of heat waves on urban areas to the lack of surface moisture in urban areas and the low wind speed associated with heat waves. Given that heat waves are projected to become more frequent and that urban populations are substantially increasing, these findings underline the serious heat-related health risks facing urban residents in the twenty-first century. Adaptation and mitigation strategies will require joint efforts to reinvent the city, allowing for more green spaces and lesser disruption of the natural water cycle.


2021 ◽  
Author(s):  
Lorenzo Mentaschi ◽  
Gregory Duveiller ◽  
Grazia Zulian ◽  
Christina Corbane ◽  
Martino Pesaresi ◽  
...  

Abstract Surface temperatures are generally higher in cities than in rural surroundings. This phenomenon, known as surface urban heat island (SUHI), increases the risk of heat-related human illnesses and mortality. Past global studies analysed this phenomenon aggregated at city scale or over seasonal and annual time periods, while human impacts strongly depend on shorter term heat stress experienced locally. Here we develop a global long-term high-resolution dataset of daytime SUHI as urban-rural surface temperature differences. Our results show that across urban areas worldwide over the period 2003-2020, 3-day SUHI extremes are on average more than twice as high as the warm-season median SUHI, with local exceedances up to 10 K. Over this period, SUHI extremes have increased more rapidly than warm-season medians, and averaged worldwide are now 1.04 K or 31% higher compared to 2003. This can be linked with increasing urbanisation, more frequent heatwaves, and greening of the earth, processes that are all expected to continue in the coming decades. Within many cities there are hotspots where extreme SUHI intensity is 10 to 15 K higher compared to relatively cooler city parts. Given the limited human adaptability to heat stress, our results advocate for mitigation strategies targeted at reducing SUHI extremes in the most vulnerable and exposed city neighbourhoods.


2018 ◽  
Vol 32 (1) ◽  
pp. 1-11
Author(s):  
Siti Badriyah Rushayati ◽  
Annisa Dyra Shamila ◽  
Lilik Budi Prasetyo

Urban Heat Island (UHI) is a phenomenon exhibited by many worldwide cities. Cities, which exhibit UHI, possess higher air temperature as compared with air temperature in the surrounding areas. However, existing UHI profiles are those occurring in subtropical areas which are, of course, very much different from those in tropical cities. Therefore, the objectives of this study are to describe the UHI’s profile and the role of tree vegetation in controlling and reducing air temperature in a tropical region’s urban areas and, particularly, in DKI Jakarta. In this study, we carried out a spatial analysis of land cover and the distribution of air temperature. In this regard, we based our analysis of the potency of tree vegetation in reducing air temperature in UHI’s profile on the distribution of air temperature in various types of land cover which extended from north to south and from east to west. The ranges of air temperature in land cover in the form of built-up areas were 29.2-39.5 ⁰C, non-tree vegetation 28.6-35.6 ⁰C, and tree vegetation 27.0-35.7 ⁰C. Accordingly, tree vegetation has the highest potential to reduce air temperature and to overcome the phenomenon of UHI.


2020 ◽  
Vol 12 (19) ◽  
pp. 7971 ◽  
Author(s):  
Gabriele Battista ◽  
Luca Evangelisti ◽  
Claudia Guattari ◽  
Emanuele De Lieto Vollaro ◽  
Roberto De Lieto Vollaro ◽  
...  

The urban heat island (UHI) phenomenon is strictly related to climate changes and urban development. During summer, in urban areas, the lack of green zones and water sources causes local overheating, with discomfort and negative effects on buildings’ energy performance. Starting from this, an experimental and numerical investigating of the climatic conditions in a university area in Rome was achieved, also assessing the occurrence of the UHI phenomenon. The analyzed area was recently renewed, with solutions in contrast to each other: on one side, an old building was re-designed aiming at high performance; on the other hand, the neighboring areas were also refurbished leading to large paved surfaces, characterized by high temperatures during summer. A calibrated numerical model was generated through ENVI-met software and eight different scenarios were compared, to mitigate the overheating of this area and to analyze the influences of the proposed solutions in terms of air temperature reduction. The analysis of this case study provides information on potential mitigation solutions in the urban environment, showing that goals and priorities in the design phase should concern not only buildings but also external areas, also considering university areas.


Climate ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 51
Author(s):  
Xueqin Li ◽  
Lindsay C. Stringer ◽  
Martin Dallimer

Due to the combination of climate change and the rapid growth in urban populations in Africa, many urban areas are encountering exacerbated urban heat island (UHI) effects. It is important to understand UHI effects in order to develop suitable adaptation and mitigation strategies. However, little work has been done in this regard in Africa. In this study, we compared surface UHI (SUHI) effects between cities located in different climate zones in East Africa, investigating how they change, both spatially and temporally. We quantified the annual daytime and night-time SUHI intensities in the five most populated cities in East Africa in 2003 and 2017, and investigated the links to urban area size. We consider the possible drivers of SUHI change and consider the implication for future development, highlighting the role of factors such as topography and building/construction materials. We suggest that UHI mitigation strategies targeting East African cities may benefit from more comprehensive analyses of blue and green infrastructure as this offers potential opportunities to enhance human comfort in areas where UHI effects are highest. However, this needs careful planning to avoid increasing associated issues such as disease risks linked to a changing climate.


Sign in / Sign up

Export Citation Format

Share Document