scholarly journals Preparation and Characterization of Fe3O4 nanoparticles and its application in Produced Water Treatment and Oil Recovery

Author(s):  
Wamda Faisal ◽  
Fares Almomani

Recently, considerable amounts of oil were produced from petroleum industries and lead to serious environmental problems. In this study, Fe3O4 (MNPs) were prepared using combustion synthesis method at temperature range from 150 to 350ºC and then applied with different concentrations to the oil/water emulsion. The synthesized MNPs were characterized using various analytical techniques, and their demulsification efficiencies were then evaluated. Results showed that the application of these nanoparticles could significantly improve the efficiency of the demulsification process, Furthermore, the prepared MNPs were still effective after being recycled for 4 cycles and give oil removal about 90%.

2010 ◽  
Vol 49 (24) ◽  
pp. 12756-12761 ◽  
Author(s):  
Ajay Mandal ◽  
Abhijit Samanta ◽  
Achinta Bera ◽  
Keka Ojha

2014 ◽  
Vol 556-562 ◽  
pp. 867-871
Author(s):  
Qiu Shi Zhao

It is significative to study sewage treatment process in low permeable oil fields. It could enhance the oil recovery. The water quality characteristics and oil/water separation characteristics were researched during different period process by GC-MS. It shows that there are about 108 kinds of organic matters, including 45 kinds of aliphatic hydrocarbon, 7 kinds of aine, 5 kinds of sulfocompound and 9 kinds of hexacyclic compounds, such as Benzene, phenol, naphthalene and anthracene. The percent of oil droplets which size was less than 10μm is 57.3%, compared to 91.6% which size was more than 50μm. It is difficult to separate the water and oil. The remaining oil was emulsified oil. The process was hard to decrease COD, and some pollutants were existed in water, such as Arsenic, Selenium, Mercury ,Cadmium and Cr6+. It is further proposed to optimize and develop this process to removal oil and suspended solids.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 395 ◽  
Author(s):  
Bin Huang ◽  
Xiaohui Li ◽  
Wei Zhang ◽  
Cheng Fu ◽  
Ying Wang ◽  
...  

The issue of pipeline scaling and oil-water separation caused by treating produced water in Alkali/Surfactant/Polymer (ASP) flooding greatly limits the wide use of ASP flooding technology. Therefore, this study of the demulsification-flocculation mechanism of oil-water emulsion in ASP flooding produced water is of great importance for ASP produced water treatment and its application. In this paper, the demulsification-flocculation mechanism of produced water is studied by simulating the changes in oil-water interfacial tension, Zeta potential and the size of oil droplets of produced water with an added demulsifier or flocculent by laboratory experiments. The results show that the demulsifier molecules can be adsorbed onto the oil droplets and replace the surfactant absorbed on the surface of oil droplets, reducing interfacial tension and weakening interfacial film strength, resulting in decreased stability of the oil droplets. The demulsifier can also neutralize the negative charge on the surface of oil droplets and reduce the electrostatic repulsion between them which will be beneficial for the accumulation of oil droplets. The flocculent after demulsification of oil droplets by charge neutralization, adsorption bridging, and sweeping all functions together. Thus, the oil droplets form aggregates and the synthetic action by the demulsifier and the flocculent causes the oil drop film to break up and oil droplet coalescence occurs to separate oil water.


2018 ◽  
Vol 11 (1) ◽  
pp. 57
Author(s):  
P.D. Sutrisna ◽  
F.S. Lingganingrum ◽  
I.G. Wenten

Nowadays, oil-in-water (O/W) emulsion has become an important topic in many industries. Petroleum industry is one of these industries. O/W emulsion produced in crude oil recovery causes problems at different stages in petroleum industry. Produced water can not be injected again into the well, because it contains high concentrations of oil, grease and suspended particles. Recently, membrane technology has been applied in separation of O/W emulsion. One membrane that has been developed special for oil filtration is slotted true surface filter. This research investigated influences of pore size and initial concentration of feed emulsion during oil filtration using slotted pore membrane. From the experiment, oil rejection will be higher if we use membrane with smaller pore size, emulsion with high stability and small trans membrane pressure. Based on the slot width it can be concluded that 33 microns membrane gives better oil rejection than 80 microns membrane. Initial concentrations of challenge emulsion also influence value of flux and oil rejection, which will also influence our decision to choose suitable membrane in relation with hydrophilicity of the membrane. During microfiltration process, there was deformation of oil particle through slot of membrane, which can be analyzed by observing size of oil drops in feed and permeate sides. Keywords: emulsion, microfiltration, slotted pore membraneAbstrakSaat ini penanganan limbah emulsi minyak dalam air menjadi topik penting di berbagai industri. Salah satunya adalah industri perminyakan. Emulsi yang dihasilkan dalam proses penambangan minyak mentah menimbulkan masalah pada beberapa tahapan proses di industri. Air yang mengandung minyak tidak dapat digunakan kembali untuk meningkatkan perolehan minyak karena mengandung minyak, lemak dan partikel tersuspensi dalam konsentrasi tinggi. Sehingga dibutuhkan proses pemisahan emulsi minyak dalam air. Akhir–akhir ini teknologi membran telah digunakan untuk memisahkan emulsi tersebut. Salah satu membrane yang dikembangkan adalah membrane berslot seperti yang digunakan dalam penelitian ini. Penelitian ini telah berupaya mengamati pengaruh variasi ukuran pori dan konsentrasi umpan terhadap performa membrane berslot dalam memisahkan emulsi minyak dalam air. Dari percobaan, diperoleh hasil bahwa rejeksi membran terhadap minyak meningkat jika digunakan membrane dengan ukuran ori lebih kecil, emulsi dengan kestabilan yang tinggi, dan beda tekanan yang kecil. Disimpulkan bahwa membrane dengan ukuran pori 33 mikrometer memberikan rejeksi membrane lebih tinggi dibandingkan membrane dengan ukuran pori 80 mikrometer. Konsentrasi awal umpan mempengaruhi fluks dan rejeksi serta mempengaruhi pilihan kita dalam memilih jenis membran yang digunakan. Selama proses filtrasi, terjadi perubahan bentuk atau deformasi partikel minyak melewati slot atau pori membrane yang diamati melalui distribusi ukuran partikel.Kata kunci: emulsi, mikrofiltrasi, membran berslot


2018 ◽  
Vol 1 (1) ◽  
pp. 31-37
Author(s):  
Ragupathy Dhanusuraman ◽  
E Muthusankar ◽  
D Kamalakannan

2021 ◽  
Author(s):  
Changxiao Cao ◽  
Zhaojie Song ◽  
Shan Su ◽  
Zihan Tang ◽  
Zehui Xie ◽  
...  

Abstract The efficiency of CO2 water-alternating-gas (WAG) flooding is highly limited in low-permeability heavy oil reservoirs due to the viscosifying action of W/O emulsification and high mobility contrast between oil and CO2. Here we propose a new enhanced oil recovery (EOR) process which involves water-based nanofluid-alternating-CO2 (NWAG) injection, and investigate the synergistic effect of nanofluid and CO2 for enhancing heavy oil recovery. Firstly, the oil-nanofluid and oil-water emulsions were prepared, and the bulk rheology and interfacial properties of emulsion fluid were tested. Then, core flooding tests were conducted to examine the NWAG flooding efficiency and its underlying mechanisms. The results showed that the bulk viscosity and viscoelasticity of oil-nanofluid emulsion reported much lower than those of oil-water emulsion, and nanofluid presented a positive contribution to the phase inversion from W/O to O/W emulsification. Compared with oil-water emulsion, the interfacial storage modulus of oil-nanofluid emulsion was obviously increased, which confirmed that more of crude oil heavy components with surface activity (e.g., resin and asphaltene) were adsorbed on interfacial film with the addition of silica nanoparticles (NPs). However, the interfacial viscosity of oil-nanofluid emulsion was much lower than that of oil-water emulsion, showing the irregularity of interfacial adsorption. This implied that the self-assembly structure of crude oil heavy component of the oil-water interface was destroyed due to the surface activity of silica NPs. During the core flooding experiments, NWAG injection could reduce the displacement pressure by 57.14% and increase oil recovery by 23.31% compared to WAG injection. By comparing produced-oil components after WAG and NWAG injection, we found that more of crude oil light components were extracted by CO2 during NWAG flooding, showing that the interaction between CO2 and crude oil was improved after oil-nanofluid emulsification. These findings clearly indicated two main EOR mechanisms of NWAG injection. One was the phase inversion during the nanofluid flooding process. The addition of silica NPs promoted phase-inversion emulsification and thus improved the displacement efficiency. The other was the enhanced interaction between CO2 and crude oil after oil-nanofluid emulsification. Because of the enhanced adsorption of crude oil heavy component on the oil-water interface, the proportion of light hydrocarbon increased in the bulk phase, and so the interaction between CO2 and oil phase was improved. This work could provide a new insight into the high-efficiency exploitation of low-permeability heavy oil reservoirs.


Sign in / Sign up

Export Citation Format

Share Document