scholarly journals Development of Novel Chalcone Analogs as Potential Multi-Targeted Therapies for Castration-Resistant Prostate Cancer

2021 ◽  
Author(s):  
Ola Hussein ◽  
Feras Alali ◽  
Ala‐Eddin Al Mustafa ◽  
Ashraf Khalil

Prostate cancer (PCa) is the second most frequently diagnosed malignancy, as well as a leading cause of cancer-related mortality in men globally. Despite the initial response to hormonal targeted therapy, the majority of patients ultimately progress to a lethal form of the disease, castration-resistant prostate cancer (CRPC). Therefore, the objective of this study was to discover and develop novel treatment modalities for CRPC. Chalcones are among the highly attractive scaffolds being investigated for their antitumor activities. A library of 26 chalcone analogs were designed, synthesized and evaluated as potential therapies for CRPC. The design was guided by in-silico ADMET prediction in which analogs with favorable drug-likeness properties were prioritized. The new compounds were synthesized, purified and characterized by extensive structural elucidation studies. The compounds in vitro cytotoxicity was evaluated against two androgen receptor (AR)-negative prostate cancer cell lines (PC3 and DU145). Among the tested compounds, pyridine containing analogs (13, 15 and 16) showed potent antiproliferative activities with IC50 values ranging between 4.32-6.47 µM against PC3 and DU145 cell lines. Detailed biological studies of the lead molecule 16 revealed that it can significantly induce apoptosis through upregulation of Bax and downregulation of Bcl-2. In addition, compound 16 potently inhibited colony formation and reduced cell migration of AR-negative PCa cell lines (PC3 and DU145). The molecular pathway analysis showed that the anticancer activity of compound 16 is associated with blocking of ERK1/2 and Akt activities. Furthermore, compound 16 inhibited angiogenesis in the chick chorioallantoic membrane (CAM) model as compared to control. Structure-activity relationship study revealed that the cytotoxicity could dramatically improve via changing the methoxylation pattern by more than 2-folds (IC50 << 2.5 μM). These results indicate that pyridine-based chalcones could serve as promising lead molecules for the treatment of CRPC; thus, further in vitro and in vivo studies are warranted.

Author(s):  
Ola Hussein ◽  
Feras Alali ◽  
Ala-Eddin Al Moustafa ◽  
Ashraf Khalil

Prostate cancer (PCa) is the second most frequently diagnosed malignancy, as well as a leading cause of cancer-related mortality in men globally. Despite the initial response to hormonal targeted therapy, the majority of patients ultimately progress to a lethal form of the disease, termed as castration-resistant prostate cancer (CRPC), which currently lacks curative therapeutic options and is associated with poor prognosis. Therefore, the development of novel treatment modalities for PCa is urgently needed. Chalcones, also known as 1,3-diphenyl-2-propen-1-ones, are among the highly attractive scaffolds being investigated for their antitumor activities. Three series of 18 cyclic (tetralone-based) and two acyclic chalcone analogs, in which ring B was either substituted with nitrogen mustard or replaced by pyrrole or pyridine heterocyclic rings, were designed, synthesized and evaluated as potential therapies for CRPC. Compounds were synthesized by Claisen-Schmidt condensation reaction, purified using columnchromatography or recrystallization and characterized by 1H-NMR, 13C-NMR and LC-MS. The compounds' in-vitro cytotoxicity was evaluated against three prostate cancer cell lines (PC3, DU145, and LNCaP). Among the tested compounds, OH14, OH19 and OH22 showed potent antiproliferative activities at low micromolar levels with IC50 values ranging between 4.4 and 10 µM against PC3 and DU145 cell lines. Detailed biological studies of the lead molecule OH19 revealed that it significantly induces apoptosis through upregulation of Bax and downregulation of BCL-2. In addition, OH19 potently inhibits colony formation and reduces cell migration of androgen-independent PCa cell lines (PC3 and DU145). The molecular pathway analysis show that the anticancer activity of OH19 is associated with attenuation in the phosphorylation of Akt and ERK. Furthermore, OH19 inhibits blood vessel formation in the chick chorioallantoic membrane (CAM) model as compared to control. These results indicate that OH19 could serve as a potential promising lead molecule for the treatment of CRPC and thus, further in-vitro and invivo studies are warranted.


2021 ◽  
Author(s):  
Michael C. Haffner ◽  
Akshay Bhamidipati ◽  
Harrison K. Tsai ◽  
David M. Esopi ◽  
Ajay M. Vaghasia ◽  
...  

BACKGROUND: Resistance to androgen deprivation therapies is a major driver of mortality in advanced prostate cancer. Therefore, there is a need to develop new pre-clinical models that allow the investigation of resistance mechanisms and the assessment of drugs for the treatment of castration resistant prostate cancer. METHODS: We generated two novel cell line models (LAPC4-CR and VCaP-CR) which were derived by passaging LAPC4 and VCaP cells in vivo and in vitro under castrate conditions. We performed detailed transcriptomic (RNA-seq) and proteomic analyses (SWATH-MS) to delineate expression differences between castration-sensitive and castration-resistant cell lines. Furthermore, we characterized the in vivo and in vitro growth characteristics of the novel cell line models. RESULTS: The two cell line derivatives LAPC4-CR and VCaP-CR showed castration resistant growth in vitro and in vivo which was only minimally inhibited by AR antagonists, enzalutamide and bicalutamide. High-dose androgen treatment resulted in significant growth arrest of VCaP-CR but not in LAPC4-CR cells. Both cell lines maintained AR expression, but exhibited distinct expression changes on the mRNA and protein level. Integrated analyses including data from LNCaP and the previously described castration resistant LNCaP-abl cells revealed an expression signature of castration resistance. CONCLUSIONS: The two novel cell line models LAPC4-CR and VCaP-CR and their comprehensive characterization on the RNA and protein level represent important resources to study the molecular mechanisms of castration resistance.


Author(s):  
Michelle Naidoo ◽  
Fayola Levine ◽  
Tamara Gillot ◽  
Akintunde T. Orunmuyi ◽  
E. Oluwabunmi Olapade-Olaopa ◽  
...  

High mortality rates of prostate cancer (PCa) are associated with metastatic castration-resistant prostate cancer (CRPC) due to the maintenance of androgen receptor (AR) signaling despite androgen deprivation therapies (ADTs). The 8q24 chromosomal locus is a region of very high PCa susceptibility that carries genetic variants associated with high risk of PCa incidence. This region also carries frequent amplifications of the PVT1 gene, a non-protein coding gene that encodes a cluster of microRNAs including, microRNA-1205 (miR-1205), which are largely understudied. Herein, we demonstrate that miR-1205 is underexpressed in PCa cells and tissues and suppresses CRPC tumors in vivo. To characterize the molecular pathway, we identified and validated fry-like (FRYL) as a direct molecular target of miR-1205 and observed its overexpression in PCa cells and tissues. FRYL is predicted to regulate dendritic branching, which led to the investigation of FRYL in neuroendocrine PCa (NEPC). Resistance toward ADT leads to the progression of treatment related NEPC often characterized by PCa neuroendocrine differentiation (NED), however, this mechanism is poorly understood. Underexpression of miR-1205 is observed when NED is induced in vitro and inhibition of miR-1205 leads to increased expression of NED markers. However, while FRYL is overexpressed during NED, FRYL knockdown did not reduce NED, therefore revealing that miR-1205 induces NED independently of FRYL.


2021 ◽  
Vol 14 (10) ◽  
pp. 1020
Author(s):  
Zohaib Rana ◽  
Sarah Diermeier ◽  
Fearghal P. Walsh ◽  
Muhammad Hanif ◽  
Christian G. Hartinger ◽  
...  

Metastatic castration-resistant prostate cancer (CRPC) has a five-year survival rate of 28%. As histone deacetylases (HDACs) are overexpressed in CRPC, the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) was trialled in CRPC patients but found to be toxic and inefficacious. Previously, we showed that novel HDAC inhibitors (Jazz90 (N1-hydroxy-N8-(4-(pyridine-2-carbothioamido)phenyl)octanediamide) and Jazz167 ([chlorido(η5-pentamethylcyclopentadieny[1–4](N1-hydroxy-N8-(4-(pyridine-2-carbothioamido-κ2N,S)phenyl)octanediamide)rhodium(III)] chloride) had a higher cancer-to-normal-cell selectivity and superior anti-angiogenic effects in CRPC (PC3) cells than SAHA. Thus, this study aimed to further investigate the efficacy and toxicity of these compounds. HUVEC tube formation assays revealed that Jazz90 and Jazz167 significantly reduced meshes and segment lengths in the range of 55–88 and 43–64%, respectively. However, Jazz90 and Jazz167 did not affect the expression of epithelial-to-mesenchymal transitioning markers E-cadherin and vimentin. Jazz90 and Jazz167 significantly inhibited the growth of PC3 and DU145 spheroids and reduced PC3 spheroid branching. Jazz90 and Jazz167 (25, 50 and 75 mg/kg/day orally for 21 days) were non-toxic in male BALB/c mice. The efficacy and safety of these compounds demonstrate their potential for further in vivo studies in CRPC models.


2014 ◽  
Vol 28 (10) ◽  
pp. 1629-1639 ◽  
Author(s):  
Yingqiu Xie ◽  
Wenfu Lu ◽  
Shenji Liu ◽  
Qing Yang ◽  
Brett S. Carver ◽  
...  

Castration-resistant prostate cancer (PCa) (CRPC) is relapse after various forms of androgen ablation therapy and causes a major mortality in PCa patients, yet the mechanism remains poorly understood. Here, we report the nuclear form of mesenchymal epithelial transition factor (nMET) is essential for CRPC. Specifically, nMET is remarkably increased in human CRPC samples compared with naïve samples. Androgen deprivation induces endogenous nMET and promotes cell proliferation and stem-like cell self-renewal in androgen-nonresponsive PCa cells. Mechanistically, nMET activates SRY (sex determining region Y)-box9, β-catenin, and Nanog homeobox and promotes sphere formation in the absence of androgen stimulus. Combined treatment of MET and β-catenin enhances the inhibition of PCa cell growth. Importantly, MET accumulation is detected in nucleus of recurrent prostate tumors of castrated Pten/Trp53 null mice, whereas MET elevation is predominantly found in membrane of naïve tumors. Our findings reveal for the first time an essential role of nMET association with SOX9/β-catenin in CRPC in vitro and in vivo, highlighting that nuclear RTK activate cell reprogramming to drive recurrence, and targeting nMET would be a new avenue to treat recurrent cancers.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Peng Xie ◽  
Hongliang Yu ◽  
Feijiang Wang ◽  
Feng Yan ◽  
Xia He

Introduction. Radiotherapy is the mainstay in the treatment of prostate cancer. However, significant radioresistance of castration-resistant prostate cancer (CRPC) cells constitutes a main obstacle in the treatment of this disease. By using bioinformatic data mining methods, LOXL2 was found to be upregulated in both androgen-independent prostate cancer cell lines and radioresistant tumor samples collected from patients with prostate cancer. We speculate that LOXL2 may play an important role in the radioresistance of CRPC cells. Methods. The effect of LOXL2 knockdown on the radiosensitivity of androgen-independent prostate cancer cells lines was measured by the clonogenic assay and xenograft tumor experiments under in vitro and in vivo conditions, respectively. In studies on the mechanism, we focused on the EMT phenotype changes and cell apoptosis changes induced by LOXL2 knockdown in DU145 cells. The protein levels of three EMT biomarkers, namely, E-cadherin, vimentin, and N-cadherin, were measured by western blotting and immunohistochemical staining. Cell apoptosis after irradiation was measured by flow cytometry and caspase-3 activity assay. Salvage experiment was also conducted to confirm the possible role of EMT in the radiosensitization effect of LOXL2 knockdown in CRPC cells. Results. LOXL2 knockdown in CRPC cells enhanced cellular radiosensitivity under both in vitro and in vivo conditions. A significant reversal of EMT was observed in LOXL2-silenced DU145 cells. Cell apoptosis after irradiation was significantly enhanced by LOXL2 knockdown in DU145 cells. Results from the salvage experiment confirmed the key role of EMT process reversal in the radiosensitization effect of LOXL2 knockdown in DU145 cells. Conclusions. LOXL2 plays an important role in the development of cellular radioresistance in CRPC cells. Targeting LOXL2 may be a rational avenue to overcome radioresistance in CRPC cells. A LOXL2-targeting strategy for CRPC treatment warrants detailed investigation in the future.


2019 ◽  
Vol 11 (498) ◽  
pp. eaaw4636 ◽  
Author(s):  
Ning Zhao ◽  
Stephanie O. Peacock ◽  
Chen Hao Lo ◽  
Laine M. Heidman ◽  
Meghan A. Rice ◽  
...  

Castration-resistant prostate cancer (CRPC) recurs after androgen deprivation therapy (ADT) and is incurable. Reactivation of androgen receptor (AR) signaling in the low androgen environment of ADT drives CRPC. This AR activity occurs through a variety of mechanisms, including up-regulation of AR coactivators such as VAV3 and expression of constitutively active AR variants such as the clinically relevant AR-V7. AR-V7 lacks a ligand-binding domain and is linked to poor prognosis. We previously showed that VAV3 enhances AR-V7 activity to drive CRPC progression. Gene expression profiling after depletion of either VAV3 or AR-V7 in CRPC cells revealed arginine vasopressin receptor 1a (AVPR1A) as the most commonly down-regulated gene, indicating that this G protein–coupled receptor may be critical for CRPC. Analysis of publicly available human PC datasets showed thatAVPR1Ahas a higher copy number and increased amounts of mRNA in advanced PC. Depletion of AVPR1A in CRPC cells resulted in decreased cell proliferation and reduced cyclin A. In contrast, androgen-dependent PC, AR-negative PC, or nontumorigenic prostate epithelial cells, which have undetectableAVPR1AmRNA, were minimally affected by AVPR1A depletion. Ectopic expression of AVPR1A in androgen-dependent PC cells conferred castration resistance in vitro and in vivo. Furthermore, treatment of CRPC cells with the AVPR1A ligand, arginine vasopressin (AVP), activated ERK and CREB, known promoters of PC progression. A clinically safe and selective AVPR1A antagonist, relcovaptan, prevented CRPC emergence and decreased CRPC orthotopic and bone metastatic growth in mouse models. Based on these preclinical findings, repurposing AVPR1A antagonists is a promising therapeutic approach for CRPC.


Sign in / Sign up

Export Citation Format

Share Document