Carbonate Pore System Characterization, a Study Case from Drowning Cap Sequence in VITA Field, ExxonMobil Block Cepu Limited (EMCL)

2021 ◽  
Author(s):  
V.T Dewi

Carbonate rocks are known as one of the principal reservoir rocks in the world due to their good porosity and permeability. However, the heterogeneity of carbonate reservoir quality is difficult to predict. Variability of diagenetic processes overprinting carbonate depositional texture has resulted in a complex carbonate pore system. As a consequence, this complexity results in a harder reservoir characterization and also a discrepancy between actual and model properties, that leads to a harder history match in reservoir simulation. By presenting a study case from the Drowning Cap Sequence in the VITA Reservoir Block Cepu, this paper will present a comprehensive approach which focusing on characterization of a carbonate pore system for optimum geomodel, simulation and surveillance. This approach utilized static data of 100 ft total of cores, ±500 thin sections, well, and image logs. The study has resulted in definition of four Carbonate Reservoir Rock Types (RRT) which were clustered using the analysis of carbonate dominant pore types and the porosity-permeability relationship. Results revealed that there are 4 RRTs observed as follows: (1) RRT 1 – Touching Vugs-dominated, with high porosity and permeability, (2) RRT 2 – Interparticle- and Moldic-dominated, with moderate to high porosity value and lower permeability than RRT 1, (3) RRT 3 – Microfracture-dominated, with very low porosity value and low to moderate permeability, and (4) RRT 4 – Minimum Dissolution, with very low porosity and permeability value, lower than RRT 3. Each RRT was integrated with well and image logs to understand its characteristics and behavior. Ultimately, all data were integrated, analyzed and successfully captured carbonate reservoir quality variation, distribution and depositional evolution along with overprinted diagenetic processes vertically and laterally. This approach successfully captured carbonate heterogeneity which ultimately will be useful to develop better geological and reservoir simulation models after being integrated with dynamic data and observations.

2021 ◽  
Author(s):  
Catherine Breislin ◽  
Laura Galluccio ◽  
Kate Al Tameemi ◽  
Riaz Khan ◽  
Atef Abdelaal

Abstract Understanding reservoir architecture is key to comprehend the distribution of reservoir quality when evaluating a field's prospectivity. Renewed interest in the tight, gas-rich Middle Miocene anhydrite intervals (Anh-1, Anh-2, Anh-3, Anh-4 and Anh-6) by ADNOC has given new impetus to improving its reservoir characterisation. In this context, this study provides valuable new insights in geological knowledge at the field scale within a formation with limited existing studies. From a sedimentological point of view, the anhydrite layers of the Miocene Formation, Anh-1, Anh-2, Anh-3, Anh-4 and Anh-6 (which comprise three stacked sequences: Bur1, Bur2 and Bur3; Hardenbol et al., 1998), have comparable depositional organisation throughout the study area. Bur1 and Bur2 are characterised by an upward transition from intertidal-dominated deposits to low-energy inner ramp-dominated sedimentation displaying reasonably consistent thickness across the area. Bur3 deposits imply an initial upward deepening from an argillaceous intertidal-dominated to an argillaceous subtidal-dominated setting, followed by an upward shallowing into intertidal and supratidal sabkha-dominated environments. This Bur3 cycle thickens towards the south-east due to a possible deepening, resulting in the subtle increase in thickness of the subtidal and intertidal deposits occurring around the maximum-flooding surface. The interbedded relationship between the thin limestone and anhydrite layers within the intertidal and proximal inner ramp deposits impart strong permeability anisotropy, with the anhydrite acting as significant baffles to vertical fluid flow. A qualitative reservoir quality analysis, combining core sedimentology data from 10 wells, 331 CCA data points, 58 thin-sections and 10 SEM samples has identified that reservoir layers Anh-4 and Anh-6 contain the best porosity and permeability values, with the carbonate facies of the argillaceous-prone intertidal and distal inner ramp deposits hosting the best reservoir potential. Within these facies, the pore systems within the carbonate facies are impacted by varying degrees of dolomitisation and dissolution which enhance the pore system, and cementation (anhydrite and calcite), which degrade the pore system. The combination of these diagenetic phases results in the wide spread of porosity and permeability data observed. The integration of both the sedimentological features and diagenetic overprint of the Middle Miocene anhydrite intervals shows the fundamental role played by the depositional environment in its reservoir architecture. This study has revealed the carbonate-dominated depositional environment groups within the anhydrite stratigraphic layers likely host both the best storage capacity and flow potential. Within these carbonate-dominated layers, the thicker, homogenous carbonate deposits would be more conducive to vertical and lateral flow than thinner interbedded carbonates and anhydrites, which may present as baffles or barriers to vertical flow and create significant permeability anisotropy.


2021 ◽  
Author(s):  
E. P. Putra

The Globigerina Limestone (GL) is the main reservoir of the seven gas fields that will be developed in the Madura Strait Block. The GL is a heterogeneous and unique clastic carbonate. However, the understanding of reservoir rock type of this reservoir are quite limited. Rock type definition in heterogeneous GL is very important aspect for reservoir modeling and will influences field development strategy. Rock type analysis in this study is using integration of core data, wireline logs and formation test data. Rock type determination applies porosity and permeability relationship approach from core data, which related to pore size distribution, lithofacies, and diagenesis. The analysis resulted eight rock types in the Globigerina Limestone reservoir. Result suggests that rock type definition is strongly influenced by lithofacies, which is dominated by packstone and wackestone - packstone. The diagenetic process in the deep burial environment causes decreasing of reservoir quality. Then the diagenesis process turns to be shallower in marine phreatic zone and causes dissolution which increasing the reservoir quality. Moreover, the analysis of rock type properties consist of clay volume, porosity, permeability, and water saturation. The good quality of a rock type will have the higher the porosity and permeability. The dominant rock type in this study area is RT4, which is identical to packstone lithofasies that has 0.40 v/v porosity and 5.2 mD as average permeability. The packstone litofacies could be found in RT 5, 6, 7, even 8 due to the increased of secondary porosity. It could also be found at a lower RT which is caused by intensive cementation.


2016 ◽  
Author(s):  
Paola Ronchi ◽  
Giovanni Gattolin ◽  
Alfredo Frixa ◽  
Chiara Margliulo

ABSTRACT During the Early Cretaceous South-Atlantic opening, in large lacustrine basins a series of shallow water carbonate platforms grew along lake margins and paleo-highs. These carbonates are giant reservoirs in the Brasil offshore, while in Angola are productive in Cabinda (Lower Congo Basin) and are being explored in the Kwanza Basin with minor success. These carbonates have peculiar facies associations represented mainly by microbialites and coquinas, and are affected by dolomitization which modified the original pore system in different ways. In presence of deep-seated extensional faults, bounding the paleo-highs, the hydrothermal dolomitization affected the reservoir carbonate improving its quality; in fact the hydrothermal dolomite produced the so-called zebra dolomite which is characterized by high porosity and permeability. On the other hand, when there is a limited influx of hydrothermal fluid, some dolomitization is observed, but it did not produce the zebra facies and the poro-perm system has lower quality. These two examples suggest that the understanding of the distribution of deep faults may help in the prediction of the diagenetic effects and resulting reservoir properties.


2020 ◽  
Vol 79 (18) ◽  
Author(s):  
Matthias Heidsiek ◽  
Christoph Butscher ◽  
Philipp Blum ◽  
Cornelius Fischer

Abstract The fluvial-aeolian Upper Rotliegend sandstones from the Bebertal outcrop (Flechtingen High, Germany) are the famous reservoir analog for the deeply buried Upper Rotliegend gas reservoirs of the Southern Permian Basin. While most diagenetic and reservoir quality investigations are conducted on a meter scale, there is an emerging consensus that significant reservoir heterogeneity is inherited from diagenetic complexity at smaller scales. In this study, we utilize information about diagenetic products and processes at the pore- and plug-scale and analyze their impact on the heterogeneity of porosity, permeability, and cement patterns. Eodiagenetic poikilitic calcite cements, illite/iron oxide grain coatings, and the amount of infiltrated clay are responsible for mm- to cm-scale reservoir heterogeneities in the Parchim formation of the Upper Rotliegend sandstones. Using the Petrel E&P software platform, spatial fluctuations and spatial variations of permeability, porosity, and calcite cements are modeled and compared, offering opportunities for predicting small-scale reservoir rock properties based on diagenetic constraints.


Author(s):  
Mahmoud Leila ◽  
Ali Eslam ◽  
Asmaa Abu El-Magd ◽  
Lobna Alwaan ◽  
Ahmed Elgendy

Abstract The Messinian Abu Madi Formation represents the most prospective reservoir target in the Nile Delta. Hydrocarbon exploration endeavors in Nile Delta over the last few decades highlighted some uncertainties related to the predictability and distribution of the Abu Madi best reservoir quality facies. Therefore, this study aims at delineating the factors controlling the petrophysical heterogeneity of the Abu Madi reservoir facies in Faraskour Field, northeastern onshore part of the Nile Delta. This work provides the very first investigation on the reservoir properties of Abu Madi succession outside the main canyon system. In the study area, Abu Madi reservoir is subdivided into two sandstone units (lower fluvial and upper estuarine). Compositionally, quartzose sandstones (quartz > 65%) are more common in the fluvial unit, whereas the estuarine sandstones are often argillaceous (clays > 15%) and glauconitic (glauconite > 10%). The sandstones were classified into four reservoir rock types (RRTI, RRTII, RRTIII, and RRTIV) having different petrophysical characteristics and fluid flow properties. RRTI hosts the quartzose sandstones characterized by mega pore spaces (R35 > 45 µm) and a very well-connected, isotropic pore system. On the other side, RRTIV constitutes the lowest reservoir quality argillaceous sandstones containing meso- and micro-sized pores (R35 > 5 µm) and a pore system dominated by dead ends. Irreducible water saturation increases steadily from RRTI (Swir ~ 5%) to RRTIV (Swir > 20%). Additionally, the gas–water two-phase co-flowing characteristics decrease significantly from RRTI to RRTIV facies. The gaseous hydrocarbons will be able to flow in RRTI facies even at water saturation values exceeding 90%. On the other side, the gas will not be able to displace water in RRTIV sandstones even at water saturation values as low as 40%. Similarly, the influence of confining pressure on porosity and permeability destruction significantly increases from RRTI to RRTIV. Accordingly, RRTI facies are the best reservoir targets and have high potentiality for primary porosity preservation.


2014 ◽  
Vol 675-677 ◽  
pp. 1363-1367 ◽  
Author(s):  
Guo Min Chen ◽  
Quan Wen Liu ◽  
Min Quan Xia ◽  
Xiang Sheng Bao

The core data, casting thin sections and scanning electron microscopy are used to study the clastic reservoir characteristics and controlling factors of reservoir growth. It indicated that the main reservoir rock types are lithic arkose, Feld spathic sandstone, and a small amount of feldspar lithic sandstone, and with compositional maturity and low to middle structural maturity. Moreover, the primary reservoir space types are mainly intergranular pores, secondary are secondary pores, and reservoir types belong to the medium-high porosity and permeability, and the average porosity and permeability of lower Youshashan formation are 17.70% and 112.5×10-3μm2 separately. Furthermore, the reservoir body is mainly sand body result from deposits of distributary channel and mouth bar of which belong to the braided delta front, and the planar physical property tends to be better reservoir to worse reservoir from northwest to southeast. Finally, mainly factors to control the distribution of reservoir physical property, are the sedimentary environment and lithology, were worked out.


2006 ◽  
Vol 9 (06) ◽  
pp. 681-687 ◽  
Author(s):  
Shawket G. Ghedan ◽  
Bertrand M. Thiebot ◽  
Douglas A. Boyd

Summary Accurately modeling water-saturation variation in transition zones is important to reservoir simulation for predicting recoverable oil and guiding field-development plans. The large transition zone of a heterogeneous Middle East reservoir was challenging to model. Core-calibrated, log-derived water saturations were used to generate saturation-height-function groups for nine reservoir-rock types. To match the large span of log water saturation (Sw) in the transition zone from the free-water level (FWL) to minimum Sw high in the oil column, three saturation-height functions per rock type (RT) were developed, one each for the low-, medium-, and high-porosity range. Though developed on a different scale from the simulation-model cells, the saturation profiles generated are a good statistical match to the wireline-log-interpreted Sw, and bulk volume of water (BVW) and fluid volumetrics agree with the geological model. RT-guided saturation-height functions proved a good method for modeling water saturation in the simulation model. The technique emphasizes the importance of oil/brine capillary pressures measured under reservoir conditions and of collecting an adequate number of Archie saturation and cementation exponents to reduce uncertainties in well-log interpretation. Introduction The heterogeneous carbonate reservoir in this study is composed of both limestone and dolomite layers frequently separated by non-reservoir anhydrite layers (Ghedan et al. 2002). Because of its heterogeneity, this reservoir, like other carbonate reservoirs, contains long saturation-transition zones of significant sizes. Transition zones are conventionally defined as that part of the reservoir between the FWL and the level at which water saturation reaches a minimum near-constant (irreducible water saturation, Swirr) high in the reservoir (Masalmeh 2000). For the purpose of this paper, however, we define transition zones as those parts of the reservoir between the FWL and the dry-oil limit (DOL), where both water and oil are mobile irrespective of the saturation level. Both water and oil are mobile in the transition zone, while only oil is mobile above the transition zone. By either definition, the oil/water transition zone contains a sizable part of this field's oil in place. Predicting the amount of recoverable oil in a transition zone through simulation depends on (among other things) the distribution of initial oil saturation as a function of depth as well as the mobility of the oil in these zones (Masalmeh 2000). Therefore, the characterization of transition zones in terms of original water and oil distribution has a potentially large effect on reservoir recoverable reserves and, in turn, reservoir economics.


Author(s):  
Handoyo Handoyo ◽  
M Rizki Sudarsana ◽  
Restu Almiati

Carbonate rock are important hydrocarbon reservoir rocks with complex texture and petrophysical properties (porosity and permeability). These complexities make the prediction reservoir characteristics (e.g. porosity and permeability) from their seismic properties more difficult. The goal of this paper are to understanding the relationship of physical properties and to see the signature carbonate initial rock and shally-carbonate rock from the reservoir. To understand the relationship between the seismic, petrophysical and geological properties, we used rock physics modeling from ultrasonic P- and S- wave velocity that measured from log data. The measurements obtained from carbonate reservoir field (gas production). X-ray diffraction and scanning electron microscope studies shown the reservoir rock are contain wackestone-packstone content. Effective medium theory to rock physics modeling are using Voigt, Reuss, and Hill.  It is shown the elastic moduly proposionally decrease with increasing porosity. Elastic properties and wave velocity are decreasing proporsionally with increasing porosity and shally cemented on the carbonate rock give higher elastic properties than initial carbonate non-cemented. Rock physics modeling can separated zones which rich of shale and less of shale.


2020 ◽  
Vol 10 (8) ◽  
pp. 3157-3177 ◽  
Author(s):  
Sameer Noori Ali Al-Jawad ◽  
Muhammad Abd Ahmed ◽  
Afrah Hassan Saleh

Abstract The reservoir characterization and rock typing is a significant tool in performance and prediction of the reservoirs and understanding reservoir architecture, the present work is reservoir characterization and quality Analysis of Carbonate Rock-Types, Yamama carbonate reservoir within southern Iraq has been chosen. Yamama Formation has been affected by different digenesis processes, which impacted on the reservoir quality, where high positively affected were: dissolution and fractures have been improving porosity and permeability, and destructive affected were cementation and compaction, destroyed the porosity and permeability. Depositional reservoir rock types characterization has been identified depended on thin section analysis, where six main types of microfacies have been recognized were: packstone-grainstone, packstone, wackestone-packstone, wackestone, mudstone-wackestone, and mudstone. By using flow zone indicator, four groups have been defined within Yamama Formation, where the first type (FZI-1) represents the bad quality of the reservoir, the second type (FZI-2) is characterized by the intermediate quality of the reservoir, third type (FZI-3) is characterized by good reservoir quality, and the fourth type (FZI-4) is characterized by good reservoir quality. Six different rock types were identified by using cluster analysis technique, Rock type-1 represents the very good type and characterized by low water Saturation and high porosity, Rock type-2 represents the good rock type and characterized by low water saturation and medium–high porosity, Rock type-3 represents intermediate to good rock type and characterized by low-medium water saturation and medium porosity, Rock type-4 represents the intermediate rock type and characterized by medium water saturation and low–medium porosity, Rock type-5 represents intermediate to bad rock type and characterized by medium–high water saturation and medium–low porosity, and Rock type-6 represents bad rock type and characterized by high water saturation and low porosity. By using Lucia Rock class typing method, three types of rock type classes have been recognized, the first group is Grain-dominated Fabrics—grainstone, which represents a very good rock quality corresponds with (FZI-4) and classified as packstone-grainstone, the second group is Grain-dominated Fabrics—packstone, which corresponds with (FZI-3) and classified as packstone microfacies, the third group is Mud-dominated Fabrics—packstone, packstone, correspond with (FZI-1 and FZI-2) and classified as wackestone, mudstone-wackestone, and mudstone microfacies.


2019 ◽  
Vol 60 (5) ◽  
pp. 1104-1114
Author(s):  
Afrah Hassan Saleh

Deposition environment and diagenesis processes are very important factors which affect and control the reservoir properties.  The carbonate Mishrif Formation has been selected as a carbonate reservoir in selected wells from southeastern Iraq to understand the influence of the Deposition environment and diagenesis processes on the carbonate reservoir. A core examination of thin sections, shows that Mishrif Formation comprises of six depositional environments, these are: deep marine, lagoon, rudist biostrome, back shoal, and shallow open marine.  These environments have effect by many diagenetic processes, including dolomitization, dissolution, micritization, cementation, recrystallization and Stylolite, some of these processes have improved the reservoir properties of the Mishrif reservoir, these are: dissolution, dolomitization and the stylolization.  The others diagenetic processes have negative influence on the Petrophysical properties, such as cementation, compaction, and recrystallization processes, which damage the porosity and decrease the pore size. The reservoir properties are controlled by deposition environment, where lagoon environment is mostly compact with low porosity, shoal environment reflects a high energy and grain-supported environment and has good reservoir potential, deep-marine environments consist of mudstone to wackestone, which represents low energy level with low porosity and represents the non-reservoir environment.


Sign in / Sign up

Export Citation Format

Share Document