Depositional Environment and Diagenesis processes impact on the carbonate rock quality: a case study, southeastern of Iraq

2019 ◽  
Vol 60 (5) ◽  
pp. 1104-1114
Author(s):  
Afrah Hassan Saleh

Deposition environment and diagenesis processes are very important factors which affect and control the reservoir properties.  The carbonate Mishrif Formation has been selected as a carbonate reservoir in selected wells from southeastern Iraq to understand the influence of the Deposition environment and diagenesis processes on the carbonate reservoir. A core examination of thin sections, shows that Mishrif Formation comprises of six depositional environments, these are: deep marine, lagoon, rudist biostrome, back shoal, and shallow open marine.  These environments have effect by many diagenetic processes, including dolomitization, dissolution, micritization, cementation, recrystallization and Stylolite, some of these processes have improved the reservoir properties of the Mishrif reservoir, these are: dissolution, dolomitization and the stylolization.  The others diagenetic processes have negative influence on the Petrophysical properties, such as cementation, compaction, and recrystallization processes, which damage the porosity and decrease the pore size. The reservoir properties are controlled by deposition environment, where lagoon environment is mostly compact with low porosity, shoal environment reflects a high energy and grain-supported environment and has good reservoir potential, deep-marine environments consist of mudstone to wackestone, which represents low energy level with low porosity and represents the non-reservoir environment.

2021 ◽  
Vol 9 (12) ◽  
pp. 1410
Author(s):  
Hammad Tariq Janjuhah ◽  
George Kontakiotis ◽  
Abdul Wahid ◽  
Dost Muhammad Khan ◽  
Stergios D. Zarkogiannis ◽  
...  

The pore system in carbonates is complicated because of the associated biological and chemical activity. Secondary porosity, on the other hand, is the result of chemical reactions that occur during diagenetic processes. A thorough understanding of the carbonate pore system is essential to hydrocarbon prospecting. Porosity classification schemes are currently limited to accurately forecast the petrophysical parameters of different reservoirs with various origins and depositional environments. Although rock classification offers a way to describe lithofacies, it has no impact on the application of the poro-perm correlation. An outstanding example of pore complexity (both in terms of type and origin) may be found in the Central Luconia carbonate system (Malaysia), which has been altered by diagenetic processes. Using transmitted light microscopy, 32 high-resolution pictures were collected of each thin segment for quantitative examination. An FESEM picture and a petrographic study of thin sections were used to quantify the grains, matrix, cement, and macroporosity (pore types). Microporosity was determined by subtracting macroporosity from total porosity using a point-counting technique. Moldic porosity (macroporosity) was shown to be the predominant type of porosity in thin sections, whereas microporosity seems to account for 40 to 50% of the overall porosity. Carbonates from the Miocene have been shown to possess a substantial quantity of microporosity, making hydrocarbon estimate and production much more difficult. It might lead to a higher level of uncertainty in the estimation of hydrocarbon reserves if ignored. Existing porosity classifications cannot be used to better understand the poro-perm correlation because of the wide range of geological characteristics. However, by considering pore types and pore structures, which may be separated into macro- and microporosity, the classification can be enhanced. Microporosity identification and classification investigations have become a key problem in limestone reservoirs across the globe.


Author(s):  
Fadhil N. Sadooni ◽  
Hamad Al-Saad Al-Kuwari ◽  
Ahmad Sakhaee-Pour ◽  
Wael S. Matter

Introduction: The Jurassic Arab Formation is the main oil reservoir in Qatar. The Formation consists of a succession of limestone, dolomite, and anhydrite. Materials and methods: A multi-proxy approach has been used to study the Formation. This approach is based on core analysis, thin sections, and log data in selected wells in Qatar. Results: The reservoir has been divided into a set of distinctive petrophysical units. The Arab Formation consists of cyclic sediments of oolitic grainstone/packstone, foraminifera-bearing packstone-wackestone, lagoonal mudstone and dolomite, alternating with anhydrite. The sediments underwent a series of diagenetic processes such as leaching, micritization, cementation, dolomitization and fracturing. The impact of these diagenetic processes on the different depositional fabrics created a complex porosity system. So, in some cases there is preserved depositional porosity such as the intergranular porosity in the oolitic grainstone, but in other cases, diagenetic cementation blocked the same pores and eventually destroyed them. In other cases, diagenesis improved the texture of non-porous depositional texture such as mudstone through incipient dolomitization creating inter-crystalline porosity. Dissolution created vugs and void secondary porosity in otherwise non-porous foraminiferal wackestone and packstone. Therefore, creating a matrix of depositional fabrics versus diagenetic processes enabled the identification of different situations in which porosity was either created or destroyed. Future Directions: By correlating the collected petrographic data with logs, it will become possible to identify certain “facio-diagenetic” signatures on logs which will be very useful in both exploration and production. Studying the micro and nano-porosity will provide a better understanding of the evolution and destruction of its porosity system.


GeoArabia ◽  
2014 ◽  
Vol 19 (2) ◽  
pp. 177-192
Author(s):  
Amer Ghabra ◽  
Dominic Tatum ◽  
Andy Gardiner ◽  
Dorrik Stow

ABSTRACT The Souedih (also spelled Suwaidiyah) Oilfield is located in the extreme northeast of Syria in part of the Mesopotamian Basin. The principal reservoir of most fields in this region is the Upper Cretaceous, carbonate-rich Massive Formation. Using data from 25 wells and 36 samples/thin sections, this study focuses on the nature and distribution of porosity in the main Souedih reservoir. The Massive A reservoir is 100Ð120 m thick and represented by uniform, bioturbated bioclastic packstone and bioclastic packstone-grainstone, deposited in a well-oxygenated, moderate to high-energy, shallow-marine environment. It is generally well cemented by microsparite and micrite, and more rarely by sparite. Porosity is highly variable, ranging from < 1% to 20%. Mouldic porosity is the most common type, with rare channel and fracture porosity. Average porosity values tend to decrease eastward across the reservoir, which can also be divided vertically into five zones. The uppermost of these shows the highest average porosity > 15%. The dominance of mouldic porosity throughout the study area indicates that secondary dissolution was the primary cause and that pre-existing bioclasts were the principal targets for this dissolution. The source of these diagenetic fluids is still unclear, although our data do lend some support to the karstification theory. These characteristics are important for understanding and managing reservoir production, not only for Souedih but for the region in general.


2020 ◽  
pp. 1353-1361
Author(s):  
Mena Jamal Faisal ◽  
Thamer A. Mahdi

Diagenetic processes and types of pores that control the reservoir properties are studied for Mauddud Formation in selected wells of Badra oil field, central Iraq. The microscopic study of the thin sections shows the effects of micritization, cementation, neomorphism, dissolution, dolomitization, compaction, and fracturing on Mauddud Formation carbonate microfacies. The decrease of porosity is resulted from cementation, compaction, and neomorphism. Different types of calcite cement occlude pore spaces such as drusy cement, syntaxial rim cement, and granular (blocky) cement. The neomorphism of micritic matrix and skeletal grains reduces porosity as indicated by development of microspar or pseudospar. Evidence of decreasing porosity by compaction includes closer packing of grains, which reduces interparticle porosity. Dissolution process has prominent effect in creating and increasing the effective porosity in different depositional textures of Mauddud Formation. Reservoir properties are increased in grain-supported microfacies, which have vuggy porosity or primary porosity, whose pore size differs depending on the size of the grains. The reservoir properties in the mud-supported microfacies are reduced due to the low occurrence of pores and their lack of connectivity if they exist.


1982 ◽  
Vol 22 (03) ◽  
pp. 429-444 ◽  
Author(s):  
Kenneth Ruzyla ◽  
Gerald M. Friedman

Abstract Several different pore systems are present in dolomite reservoir rocks of the Red River formation (Upper Ordovician) at Cabin Creek field, MT. Each system is associated with particular depositional environments and diagenetic regimes. Pore geometry is mostly a function of the size and shape of the dolomite crystals composing the rock matrix. Mean pore-throat size, a statistical measure of pore geometry, increases as porosity percent increases, depending on the type of dolomite. This relationship permits prediction of reservoir pore geometry and a better assessment of recovery efficiency once lithofacies distribution, porosity origin, and diagenetic history have been determined for the reservoir by study of cores and rock thin-sections. Introduction The reservoir characteristics of any rock type depend on the arrangement of the pore space and how the pores are interconnected. The pore-system geometry of a reservoir rock must be understood to determine fully its response to primary or enhanced recovery. To predict pore geometry trends, it is necessary to establish relationships between measures of pore geometry and petrophysical parameters. which are measurable by electric-log surveys of boreholes. This is because cores, which are necessary for pore geometry determination, are usually available for select wells of any given field. Pore geometry is mostly a function of depositional environment and diagenetic processes such as cementation, recrystallization, mineralogical alterations, and selective leaching of rock components. This study presents an approach for determining heterogeneities of carbonate-reservoir pore geometry and for delineating pore geometry throughout the reservoir. The application to future enhanced recovery also is discussed. The formation under study is the Red River formation (Upper Ordovician) of Cabin Creek field, a producing oil field located in southeast Montana (Fig. 1). The Red River formation is a major producing reservoir in the area, and Cabin Creek is a potential candidate for tertiary recovery. Structurally, Cabin Creek is on the Cedar Creek anticline, a long asymmetrical feature on the southwest margin of the Williston basin (Fig. 1). Fig. 2 is a structure contour map of Cabin Creek field. The Red River formation averages about 500 ft (153 m) in thickness and consists of a sequence of alternating limestones and dolostones (Fig. 3). Production is from the U2, U4, and U6 dolostone units in the upper 150 ft (46 m) of the formation. The interstratified U1, U3, and US limestone units are nonproductive and nonporous (Fig. 4). Lateral and vertical variations in degree of dolomitization are mostly responsible for variations of reservoir properties. Commingled Ordovician and Silurian oil production was 61,570,000 bbl as of Sept. 1979, with reserves of 13,425,000 bbl (2 134 405 m ). The field has been on waterflood since April 1964. Approximately 1,450 ft (444 m) of core from 12 different wells was studied to delineate field stratigraphy, distribution of lithofacies, and depositional environments. Core slabs were ground with abrasive grit, then etched in diluted hydrochloric acid to enhance sedimentary structures and aid in identification of carbonate grains and matrix material. Staining methods were used to aid mineralogical identification. Diagenesis, porosity types, and origin of porosity were determined by petrographic analysis of thin-sections. Values of porosity percentage, permeability, and saturations are from core-plug analyses. Size and shape of pore throats were determined from mercury capillary-pressure data and from scanning-electron micrographs of resin pore casts, respectively. Plots were made of porosity percentage vs. parameters of pore geometry for producing zones within the Red River formation. SPEJ P. 429^


2021 ◽  
Author(s):  
V.T Dewi

Carbonate rocks are known as one of the principal reservoir rocks in the world due to their good porosity and permeability. However, the heterogeneity of carbonate reservoir quality is difficult to predict. Variability of diagenetic processes overprinting carbonate depositional texture has resulted in a complex carbonate pore system. As a consequence, this complexity results in a harder reservoir characterization and also a discrepancy between actual and model properties, that leads to a harder history match in reservoir simulation. By presenting a study case from the Drowning Cap Sequence in the VITA Reservoir Block Cepu, this paper will present a comprehensive approach which focusing on characterization of a carbonate pore system for optimum geomodel, simulation and surveillance. This approach utilized static data of 100 ft total of cores, ±500 thin sections, well, and image logs. The study has resulted in definition of four Carbonate Reservoir Rock Types (RRT) which were clustered using the analysis of carbonate dominant pore types and the porosity-permeability relationship. Results revealed that there are 4 RRTs observed as follows: (1) RRT 1 – Touching Vugs-dominated, with high porosity and permeability, (2) RRT 2 – Interparticle- and Moldic-dominated, with moderate to high porosity value and lower permeability than RRT 1, (3) RRT 3 – Microfracture-dominated, with very low porosity value and low to moderate permeability, and (4) RRT 4 – Minimum Dissolution, with very low porosity and permeability value, lower than RRT 3. Each RRT was integrated with well and image logs to understand its characteristics and behavior. Ultimately, all data were integrated, analyzed and successfully captured carbonate reservoir quality variation, distribution and depositional evolution along with overprinted diagenetic processes vertically and laterally. This approach successfully captured carbonate heterogeneity which ultimately will be useful to develop better geological and reservoir simulation models after being integrated with dynamic data and observations.


2017 ◽  
Vol 44 (1) ◽  
pp. 39 ◽  
Author(s):  
Elena Previtera

The Neuquén Basin in northwestern Patagonia, Argentina, holds the most important record of Cretaceous dinosaurs in South America.The Neuquén Group (Upper Cretaceous) is the richest dinosaur-bearing unit of the basin. It comprises the Río Limay, the Río Neuquén and the Río Colorado subgroups. In this study, dinosaur remains from the Río Neuquén and the Río Colorado subgroups outcropping in Mendoza are examined. In this group, isolated, disarticulated or partially articulated sauropods and theropods are abundant. However, little is known about the diagenetic history of fossil assemblages. In southern Mendoza, three fossiliferous sites were found in the areas of Paso de las Bardas (Quebrada Norte) and Cerro Guillermo (CG1, CG2). This study aims to add to the knowledge of diagenetic processes involving dinosaur remains from the Neuquén Group, as well as their relation to the depositional environment. Histologic features and diagenetic processes of dinosaur bones were analyzed through thin sections in order to interpret the degree of taphonomic alteration. The fossil-diagenetic processes inferred include substitution, fracturing, plastic deformation and different permineralization events. Combined analyses through X-ray diffractometry (XRD) and petrographic studies reveal the substitution of hydroxyapatite by francolite. The presence of fluorine -in one of the cases- suggests a link between the elemental composition and depositional environments: floodplain and fluvial channel. Permineralization stages include infilling of vascular canals, trabeculae and fractures with iron oxides and iron carbonate minerals during the burial history. This contribution represents an integral approach to the study of Cretaceous dinosaurs for assessing the diagenetic changes in the bone microstructure and the differential preservation of fossil remains in fluvial environments.


Author(s):  
L. Yarmots ◽  
G. Yarmots ◽  
A. Belenkaya

For ruminants, especially high-yielding animals in addition to the complete supply of animals with protein, its digestibility in the rumen is important. With low protein digestibility in the rumen, the released ammonia will be more effectively used by the rumen microflora, and the undigestible protein in the subsequent sections of the digestive tract can serve as a source of amino acids for the body. The use of concentrate mixtures with the inclusion of local, affordable and cheaper grain feeds, in particular a high-energy and protein ingredient- rapeseed presscake makes it possible to increase the milk productivity of cows throughout lactation. These presscakes are well balanced in their amino acid composition and belong to feeds whose protein has a low degree of digestibility in the rumen. The purpose of the researches was to study the digestibility of nutrients and milk productivity of cows when using the concentrate mixture with the inclusion of rapeseed presscake. In the scientific and economic experiment has been carried out on lactating cows, where the cows of the experimental group in the concentrate mixture of peas has been replaced with rapeseed presscake the digestibility of nutrients in the ration, energy metabolism and milk productivity have been studied. Studies have shown that almost all the nutrients were significantly better digested by the animals of the experimental group. Energy in milk was more allocated by cows of the experimental group by 6,29 MJ. From cows of the experimental group for 100 and 305 days of lactation has been obtained more milk by 6,27 and 7,06 %, respectively, than from control herdmates. The biochemical parameters of blood were within the limits of the physiological norm in animals of both groups. Thus, the replacement of peas with rapeseed presscake in the concentrate mixture did not have a negative influence on the metabolic processes and helped to increase the milk productivity of cows.


2021 ◽  
pp. 1-15
Author(s):  
Dong-Yu Zheng ◽  
Si-Xuan Wu

Abstract Textures are important features of sandstones; however, their controlling factors are not fully understood. We present a detailed textural analysis of fluvio-lacustrine sandstones and discuss the influences of provenance and depositional environments on sandstone textures. The upper Permian – lowermost Triassic Wutonggou sandstones in the Bogda Mountains, NW China, are the focus of this study. Sandstone thin-sections were studied by point counting and their textures were analysed using statistical and principal component analysis. Fluvial lithic, fluvial feldspathic, deltaic lithic, deltaic feldspathic, littoral lithic and littoral feldspathic sandstone were classified and compared. These comparisons indicate that lithic and feldspathic sandstones from the same depositional settings have significant differences in graphic mean, graphic standard deviation and roundness; in contrast, sandstones from different depositional settings but with similar compositions have limited differences in textures. Moreover, three principal components (PCs) are recognized to explain 75% of the total variance, of which the first principal component (PC1) can explain 44%. In bivariate plots of the PCs, sandstones can be distinguished by composition where lithic and feldspathic sandstones are placed in different fields of the plots along the axis of PC1. However, sandstones from different depositional settings overlap and show no clear division. These results indicate that provenance, mainly the source lithology, is the most significant controlling factor on sandstone texture, whereas the depositional environment has limited influence. This study improves our understanding of textural characteristics of fluvio-lacustrine sandstones and their controlling factors, and shows the potentiality of principal component analysis in sandstone studies.


Sign in / Sign up

Export Citation Format

Share Document