scholarly journals FARMERS KNOWLEDGE ON INTERGRATED PEST MANAGEMENT IN CUCURBIT PRODUCTION

Author(s):  
Christopher L Materu ◽  
Essau W. Losujaki ◽  
Irsyadi Zain ◽  
Betty V

It is estimated that more than 50% of the crop loss is due to pest infestation. Assessment of farmers’ knowledge on Integrated Pest Management and pesticides use to manage threat pests, their safe use in cucurbit production was carried out using a semi-structured questionnaire. Results showed that cucurbit growers were categorized as youth 5% (20-30 years, 31-40 middle age and 41-50 years were considered as old age growers. More than 90% of the growers use pesticides from Agro Input suppliers for managing different pests. Respondents identified aphids as a major pest represent 40% followed by leaf feeding pest 20%, fruit flies represent 15% and the least was weeds 10%. 95% of the interviewed growers were aware on negative side effect from pesticide use both to human and environment. Less than 40% of the respondents use protective gears during pesticide application. About 30% of the growers attended short course training on IPM through Farmer Field Schools. Despite of training on IPM none of them new insect identification, monitoring, biological control agents and other pollinators apart from bees. This study showed there is a need to train vegetable growers on importance of insect monitoring, biological control agent in cucurbit production.

1988 ◽  
Vol 120 (1) ◽  
pp. 63-71 ◽  
Author(s):  
Daniel J. Sullivan ◽  
Peter Neuenschwander

AbstractThe encyrtid wasp Epidinocarsis lopezi (De Santis) has been introduced into Africa as a biological control agent against the cassava mealybug Phenacoccus manihoti Matile-Ferrero. This host has a defense reaction against the immature parasitoid that involves encapsulation and melanization. Under laboratory conditions, 37.5% of once-stung cassava mealybugs had been parasitized, as indicated by eggs and larvae of the parasitoid in dissected hosts. Of these parasitized cassava mealybugs, 89.6% contained melanized particles (egg, partially melanized larva, internal host tissues, exoskeleton wound scars). Some of the parasitoid larvae were only partially melanized, and either freed themselves from the melanized capsule or else shed it at the next molt. By the 3rd day of their development only 12.5% were completely melanized. In cassava mealybugs with melanized host tissue but no living parasitoid, the survival of the host was not affected by the melanization. The mealybug itself sometimes shed black particles at the next molt and these were found attached to the cast skins. When superparasitized in the laboratory, 68.6% of twice-stung cassava mealybugs contained parasitoids. Mummies collected from a field experiment showed that melanization rates of mummies increased with increasing parasitization rates. Thus, melanization in the cassava mealybug was commonly triggered when E. lopezi oviposited, but this defense reaction was mostly ineffective, permitting the introduced parasitoid to be a successful biological control agent in Africa against the cassava mealybug, a major pest on this important food crop.


Insects ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 226 ◽  
Author(s):  
Dirk Babendreier ◽  
Min Wan ◽  
Rui Tang ◽  
Rui Gu ◽  
Justice Tambo ◽  
...  

The impact and sustainability of two interventions that have been formulated to introduce integrated pest management (IPM) into rice and maize crops in Southwestern China, Laos, and Myanmar between 2011 and 2016, and were assessed at the end of 2017. From 22 Trichogramma rearing facilities established during the interventions, 11 were still producing substantial quantities of biocontrol agents 1.5 years after project support had ended, while seven had stopped operations completely, and four were doing stock rearing only. Through the implementation of biological control-based IPM, slightly higher yields were achieved in maize and rice (4–10%), when compared to control farmers, but the difference was not statistically significant. However, the use of pesticides nearly halved when farmers started using Trichogramma egg-cards as a biological control agent. Support from either public or private institutions was found to be important for ensuring the sustainability of Trichogramma rearing facilities. Many of the suggested IPM measures were not adopted by smallholder farmers, indicating that the positive impacts of the interventions mostly resulted from the application of Trichogramma biological control agents. The following assessment suggests that further promotion of IPM adoption among farmers is needed to upscale the already positive effects of interventions that facilitate reductions in synthetic pesticide use, and the effects on sustainable agricultural production of rice and maize in the target area more generally.


2021 ◽  
Vol 87 ◽  
pp. 481-492 ◽  
Author(s):  
Brian N. Hogg ◽  
Evelyne Hougardy ◽  
Elijah Talamas

Bagrada bug, Bagrada hilaris (Burmeister) (Hemiptera, Pentatomidae), has become a major pest of cole crops (cabbage, broccoli, cauliflower, kale) in California since its arrival in 2008. In this study we documented parasitism of B. hilaris eggs at a highly infested site in northern California by deploying sentinel B. hilaris eggs and collecting naturally-laid B. hilaris eggs in the soil. Two parasitoids, Gryon aetherium Talamas (Hymenoptera, Scelionidae) and Ooencyrtus californicus Girault (Hymenoptera, Encyrtidae), emerged from sentinel eggs, but only G. aetherium was documented attacking eggs in the soil. Gryon aetherium is currently being assessed as a classical biological control agent for B. hilaris in California, and mating experiments showed that crosses between G. aetherium from Pakistan and California yielded viable female offspring. This report marks the first known record of G. aetherium in the USA, and further work should be conducted to assess the potential of this parasitoid for biological control of B. hilaris.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Peris Wangari Nderitu ◽  
Mattias Jonsson ◽  
Esther Arunga ◽  
Mark Otieno ◽  
John Jamleck Muturi ◽  
...  

Combination of pest management strategies that minimize pesticide use and conserve natural enemies is important for a sustainable environment. Overreliance on synthetic insecticides in the management of Tuta absoluta has led to pesticide resistance leading to difficulties in managing the pest. In this regard, alternative measures need to be put in place to reduce the effects of this pest. The objective of this study was, therefore, to assess the effectiveness of host plant resistance, biological control, and selective insecticides when used in combination, in the management of T. absoluta in tomato production. The study was set up in a greenhouse in a completely randomized design involving two tomato varieties, an insecticide (chlorantraniliprole), and a biological control agent(Macrolophus pygmaeus), applied singly or in combination. Data were collected on T. absoluta damage from the lower, intermediate, and upper leaves. The results from this study show that a combination of insecticide with a moderately resistant variety had a significantly lower T. absoluta damage as compared with a susceptible variety combined with an insecticide. However, the moderately resistant variety when combined with insecticide showed no effect when the biological control agent was added. The susceptible variety significantly reduced T. absoluta damage when combined with the biological control agent. These results indicate that treatment combinations in insect pest management can be utilized. The present study results indicate that using a moderately resistant variety (Riogrande VF) in combination with the insecticide chlorantraniliprole (Coragen®) and a susceptible variety (Pesa F1) in combination with the biological control agent (M. pygmaeus) can improve T. absoluta management. Under good habitat management, the susceptible variety will perform equally as the moderately resistant variety due to suppression of the T. absoluta populations by natural enemies. These findings show the importance of environmental conservation both by enhancing natural enemy abundance and use of selective insecticide in the management of T. absoluta in tomato production. Combinations in this present study are likely to reduce insecticide doses, thereby reducing the cost of production and enhancing environmental compatibility with natural enemies.


2009 ◽  
Vol 62 ◽  
pp. 412-412 ◽  
Author(s):  
P.J. Workman ◽  
S.A. Whiteman

The parasitoid Tamarixia triozae (Burks) (Hymenoptera Eulophidae) has been imported from Mexico into containment in New Zealand as a potential biological control agent for the tomato/potato psyllid Bactericera cockerelli (Sulk) (Hemiptera Triozidae) The tomato/potato psyllid is a North American pest that was first reported in New Zealand in 2006 This psyllid has been found to vector the bacterial disease Candidatus Liberibacter solanacearum or psyllarous and has now become a major pest on both greenhouse and outdoor solanaceous crops Inundative releases of T triozae have been used to control the tomato/potato psyllid in greenhouse crops in North America In New Zealand this parasitoid may also have potential for the classical biological control of this psyllid Data to support an application for the full release of this parasitoid will be obtained by comparing the efficacy of T triozae and an undescribed species of Tamarixia found in New Zealand in 1997; establishing the ability of T triozae to parasitise the tomato/potato psyllid on capsicums tomatoes and potatoes; and undertaking host specificity testing using indigenous psyllids Approval to import T triozae was obtained under the HSNO Act 1996 and HSNO Order 1998 (ERMA Approval Code NOC00253039) and the Biosecurity Act 1993 (MAF Biosecurity Permit to Import Live Animals 2008035896)


2007 ◽  
Vol 97 (3) ◽  
pp. 281-290 ◽  
Author(s):  
P.R. Grundy

AbstractHelicoverpa spp. and mirids, Creontiades spp., have been difficult to control biologically in cotton due to their unpredictable temporal abundance combined with a cropping environment often made hostile by frequent usage of broad spectrum insecticides. To address this problem, a range of new generation insecticides registered for use in cotton were tested for compatibility with the assassin bug, Pristhesancus plagipennis (Walker), a potential biological control agent for Helicoverpa spp. and Creontiades spp. Indoxacarb, pyriproxifen, buprofezin, spinosad and fipronil were found to be of low to moderate toxicity on P. plagipennis whilst emamectin benzoate, abamectin, diafenthiuron, imidacloprid and omethaote were moderate to highly toxic. Inundative releases of P. plagipennis integrated with insecticides identified as being of low toxicity were then tested and compared with treatments of P. plagipennis and the compatible insecticides used alone, conventionally sprayed usage practice and an untreated control during two field experiments in cotton. The biological control provided by P. plagipennis nymphs when combined with compatible insecticides provided significant (P<0.001) reductions in Helicoverpa and Creontiades spp. on cotton and provided equivalent yields to conventionally sprayed cotton with half of the synthetic insecticide input. Despite this, the utilization of P. plagipennis in cotton as part of an integrated pest management programme remains unlikely due to high inundative release costs relative to other control technologies such as insecticides and transgenic (Bt) cotton varieties.


2021 ◽  
Author(s):  
Lissette Torres-Torres ◽  
Carlos Espinel-Correal ◽  
Adriana Santos-Díaz

The search for commercially viable entomopathogenic fungi for use in integrated pest management programs involves several steps. Fungal species must first be obtained from diseased insects or the environment and identified. Then, they must be evaluated under laboratory conditions to identify the most promising candidates. Because of that, bioassays must be repeatable and reliable to determine accurate pathogenicity or virulence. Variability in results may be caused by the variation in the components of an assay. However, the availability of a standardized bioassay is limited. Few reports detail the methods used to develop bioassays for a specific purpose and, without these details, it is difficult to develop bioassay methodologies suitable to evaluate the fungus-host relationship. We described a protocol based on the immersion method to evaluate entomopathogenic fungi (larval and adult stages), that can be reproduced to reduce variability. This protocol can be used in several stages of biopesticide development: selection of the biological control agent, characterization of the microorganism, formulation compatibility, and in vitro evaluation of efficacy.


Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1092
Author(s):  
Thaís Fagundes Matioli ◽  
Mariana Rosa da Silva ◽  
Juliano de Bastos Pazini ◽  
Geovanny Barroso ◽  
Júlia Gabriela Aleixo Vieira ◽  
...  

The generalist mirid predator Macrolophus basicornis may contribute to Integrated Pest Management (IPM) of Bemisia tabaci in tomato crops. It is important to know the compatibility of the chemicals used to control this pest with this promising biological control agent. Seven insecticides were tested to investigate their toxicity to the predator. For four of the products, the LC50 for adults were determined. Buprofezin, cyantraniliprole and spiromesifen did not cause lethality and were classified as harmless. Acetamiprid, bifenthrin, etofenprox + acetamiprid and pyriproxyfen + acetamiprid caused acute toxicity and were classified as harmful. LT50 for all harmful insecticides were relatively low, ranging from 1.8 to 3.2 days. Moreover, these four insecticides have low LC50, with acetamiprid (0.26 mg a.i. L−1) as the lowest, followed by bifenthrin (0.38 mg a.i. L−1), etofenprox + acetamiprid (4.80 mg a.i. L−1) and pyriproxyfen + acetamiprid (8.71 mg a.i. L−1). However, the calculated risk quotient (RQ) values demonstrated that these insecticides were mostly ecologically safe for this predator, except for acetamiprid, classified as slightly to moderately toxic. The present study can contribute to the use of M. basicornis as a biological control agent on tomato crops and to compatible use with the insecticides tested, according to IPM strategies.


Sign in / Sign up

Export Citation Format

Share Document