scholarly journals DETERMINATION OF THERMAL CONDUCTIVITY FOR ADOBE (CLAY SOIL) MIXED WITH DIFFERENT PROPORTIONS OF QUARTZ (SHARP SAND)

2019 ◽  
Vol 7 (3) ◽  
pp. 335-345
Author(s):  
S. K Singh ◽  
Ngaram S. M. ◽  
Wante H. P.

This research investigated the thermal conductivity of Adobe mixed with Quartz in view of their availability usage as building materials. The thermal conductivities of disc made from Adobe-Quartz chippings were determined. The values of the thermal conductivities obtained were between 0.6Wm-1k-1and 0.9Wm-1k-1, these values could be used to identify Adobe/Quartz as one of the engineering materials used in building construction. Adobe/Quartz was prepared in discs form of the same diameters and thicknesses and was also compressed under the same pressure of 15 atmospheres (100: 0, 95: 5and 80: 20). The average values of the thermal conductivities were between 0.07Wm-1Ҡ-1 and 0.93Wm-1Ҡ-1, for sample contained the proportion of (80:20) and the sample of ratio (95:5). MATLAB 7.0 and EXCEL software were used in the various computations, especially in determining dT/dt, Root mean square error (RMSE), Curve fittings parameter and the correlation coefficient, R2. An average correlation coefficient of 0.78 was existed between Adobe-Quartz ratio and thermal conductivity. The equation, y = -0.11x2 + 0.01x + 1.03 is the general equation that can be used for the prediction of average thermal conductivity at various ratios. Where y is the average thermal conductivity and x here signifies the ratios. This also indicates that compacted Adobe-Quartz of low density will be a suitable thermal insulator when used as aggregates in walls.

2019 ◽  
Vol 7 (3) ◽  
pp. 274-281
Author(s):  
S. K Singh ◽  
H. P Wante ◽  
S. M Ngaram

The adobe structure is constructed by using low energy materials like adobe soil and sand etc. Adobe and cob are terms often used to describe sun dried clay materials. Adobe is a Spanish word derived from the Arabic atob, which literally means sun dried bricks.This paper investigated the thermal conductivity of Adobe mixed with Quartz in view of their availability usage as building materials. The thermal conductivities of disc made from Adobe-Quartz chippings were determined, the values obtained were between 0.57Wm-1k-1 and 0.91Wm-1k-1, and these values could be used to identify Adobe-Quartz as one of the engineering materials used in building construction, adopted to reduce the temperature of buildings without the need for power consumption. Consequently, the aim of this study is to test the usefulness of applying selected Adobe-Quartz to improve thermal performance and to reduce energy consumption of residential buildings in hot arid climate setting, Mubi, Adamawa State, Nigeria. Energy reduction was achieved by making the Adobe-Quartz into bricks used as aggregates in walls. Adobe-Quartz was made in disc form of the same thickness and diameter, by proportions of Adobe to Quartz (90:10, 85:15, 80:20), i.e. 10 samples for each ratio. The average values of the thermal conductivities were between 0.07Wm-1k-1 and 0.93Wm-1k-1, the least thermal conductivity value was 0.57Wm-1k-1 for the ratio of (90:10). MATLAB 7.0 and EXCEL software were used in the various computations. An average correlation coefficient, R2 of 0.75 was existed between Adobe-Quartz ratios to thermal conductivities.


1982 ◽  
Vol 22 (04) ◽  
pp. 558-562 ◽  
Author(s):  
P.C. Rawat ◽  
S.L. Agarwal

Abstract An important parameter required for computing heat loss through buried submarine pipelines transporting crude oil is the thermal conductivity of soils. This paper describes an apparatus designed for determination of the thermal conductivity of soils at the desired moisture/ density condition in the laboratory under steady-state conditions. Experimental results on the three soils studied show that thermal conductivity increases as dry density increases at a constant moisture content and that it increases as water content increases at constant dry density. These results confirm the trends isolated earlier by Kersten. The experimental results are compared with the available empirical relationships. Kersten's relation is observed to predict the thermal conductivity of these soils reasonably. The predictions from Makowski and Mochlinski's relation (quoted by Szilas) are not good but improve if the sum of silt and clay fractions is treated as a clay fraction in the computation. Introduction Submarine pipelines are used extensively for transporting crude oil from offshore to other pipelines offshore or onshore. These pipelines usually are steel pipes covered with a coating of concrete. They often are buried some depth below the mudline. The rheological properties of different crude oils vary, and their viscosities increase with a decrease in temperature. Below some temperature, the liquid oil tends to gel. Therefore, for efficient transportation, the crude must be at a relatively high temperature so that it has a low viscosity. The temperature of the soil/water system surrounding a submarine pipeline is usually lower than that of oil. This temperature difference induces heat to flow from the oil to the environment, and the temperature of the oil decreases as it travels along the length of the pipeline. One must ensure that this temperature reduction does not exceed desirable limits dictated by the rheological properties of oil and by the imperatives of efficient economic properties of oil and by the imperatives of efficient economic transportation. Thus the analytical problem is to predict the temperature of crude in the pipeline some distance away from the input station. To do so, knowledge of the overall heat transfer coefficient for the pipeline is required, for which, in turn, it is necessary to know the thermal conductivities of the oil, the pipeline materials and its coating, and the soil. This paper presents thermal conductivities of soils determined in the laboratory under steady-state conditions and also presents a comparison of the test results of three soils with values determined from existing empirical relationships. Literature Review Heat moves spontaneously from higher to lower temperatures. In a completely dry porous body, transmission of heat can take place not only by conduction through the solid framework of the body and the air in the pores but also by convection and radiation between the walls of a pore and by macro- and microdistillation. In soils, however, it can be ascribed essentially to conduction, a molecular phenomenon that can be expressed in terms of experimentally determined coefficients of conductivity or resistivity, although these actually may include microdistillation and other mechanisms. SPEJ p. 558


2020 ◽  
Vol 9 (1) ◽  
pp. 23-27
Author(s):  
J.O. Adepitan ◽  
F.O. Ogunsanwo ◽  
J.D. Ayanda ◽  
A.A. Okusanya ◽  
A.D. Adelaja ◽  
...  

The study investigates the thermal properties of different insulating material used in building construction in Ijebu Ode, a tropical rainforest region, south western, Nigeria. Five insulating material; asbestos, Plaster of Paris (P.O.P), PolyVinyl Chloride (PVC), hardboard and paperboard, were subjected to thermal investigation using Lee’s disc electrical method. The result obtained showed that the thermal conductivities obtained are within the range of values specified for good insulating materials. Asbestos was found to be associated with the least thermal conductivity of the value 𝟎. 𝟏𝟕𝟏𝟕 𝑾𝒎-𝟏𝑲-𝟏while PVC had the highest thermal conductivity values of 𝟏. 𝟔𝟒𝟗𝟗 𝑾𝒎-𝟏𝑲-𝟏. This may be associated with the temperature and the heat flux on the surface of the material. The results obtained for thermal conductivity, thermal resistivity and thermal diffusivity correlated favourably when compared with those of previous work from other locations. Asbestos being the material with the lowest thermal conductivity is therefore recommended for use as the suitable insulating ceiling material in the study area. Keywords: thermal conductivity, diffusivity, resistivity, Lee’s disc


The analysis of the dynamic theory of gases has indicated an interesting relation between the viscosity η , the thermal conductivity K, and the specific heat at constant volume C c of a gas. This relation is represented by the expression K = f . C c . η , in which the factor f depends upon the law of force operative in molecular collision, and is known if K, C c , and η can be determined experimentally. In view of its importance in this respect, and also from the fact that great accuracy and consistency of measurement are possible in modern determinations of the viscosity of gases, the importance of the development of a method by which the conductivity can be measured with the same order of accuracy demands increasing attention.


The interest in the determination of the thermal conductivities of oxygen and nitrogen lies partly in their relation to the thermal conductivity of air. The latter is the medium which practically every experimenter on gaseous thermal conduction has investigated, and has therefore become the standard substance in this field of research. Being a mixture chiefly of the gases oxygen and nitrogen, with the latter in the greater proportion, the value of its conductivity should lie between those of oxygen and nitrogen and should be nearer that of nitrogen than that of oxygen. The authors, in common with Weber and Todd, have verified this experimentally, the only observer finding these con­ductivities in a contrary order being Winkelman, who used a cooling thermometer method. The following is a table of the results hitherto obtained for the absolute thermal conductivities at 0° C. of oxygen and nitrogen, together with their authors’ results for air. The values marked with an asterisk have been deduced by applying the temperature coefficient, 0.0029 per 0° C., to results which were obtained at temperatures above 0° C. Weber has recently published a new result for the thermal conductivity of air, 0.0000574, which is about 1 per cent. higher than his old value. Assuming that, if his results for oxygen and nitrogen were revised, they would be increased in the same proportion, his new values for these gases would be—oxygen 0.0000583, and nitrogen 0.0000572.


2004 ◽  
Vol 92 (12) ◽  
Author(s):  
Jamshed H. Zaidi ◽  
M. Arif ◽  
I. Fatima

SummarySamples of sand, stone and manufactured building materials collected from Karachi area have been analyzed for the primordial natural radionuclides


2014 ◽  
Vol 1025-1026 ◽  
pp. 535-538
Author(s):  
Young Sun Jeong

The most basic way to keep comfortable indoor environments for a building’s occupants and save energy for space heating and cooling in residential buildings is to insulate the building envelope. Among the building materials to be used, thermal insulation materials primarily influence thermal performance. In particular, the type, thermal conductivity, density, and thickness of heat insulator, are important factors influencing thermal insulation performance. We investigate the design status of residential buildings which were designed in accordance with the building code of Korea and selected the type of thermal insulation materials applied to the walls of buildings. The present study aims at measuring the thermal conductivity of thermal insulation materials used for building walls of residential buildings. In this study, after collecting the design documents of 129 residential buildings, we investigated the type and thickness of insulation materials on the exterior wall specified in the design documents. As the thermal insulation materials, extruded polystyrene (XPS) board and expanded polystyrene(EPS) board are used the most widely in Korea when designing residential buildings. The thickness of thermal insulation materials applied to the exterior wall was 70mm, most frequently applied to the design. We measured the thermal conductivity and the density of XPS board and EPS board. When the density of XPS and EPS was 30~35 kg/㎥, the thermal conductivity of XPS was 0.0292 W/mK and it of EPS was 0.0316 W/mK.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Willis Otieno Gor Odongo ◽  
Margaret Chege ◽  
Nadir Hashim ◽  
Shinji Tokonami ◽  
Kranrod Chutima ◽  
...  

The areas around Homa and Ruri hills in Homa Bay County in Kenya are associated with high background radiation levels. The activity concentration of the natural radionuclides (226Ra, 232Th, and 40K) in earthen building materials used in the areas of Homa and Ruri hills has been measured using a NaI (Tl) detector in this work. The measured values of radioactivity concentrations are used to estimate the associated radiological risk. The earthen building material samples from Ruri registered relatively high 232Th concentration values averaging 1094 ± 55 Bq/kg, nearly three times those of the samples from Homa. 226Ra level was not significantly different in both regions with Homa reporting 129 ± 10 Bq/kg and Ruri 111 ± 6 Bq/kg. 40K was however higher in the samples from Homa by an approximate factor of 2 relative to those from Ruri where the activity concentration was 489 ± 24 Bq/kg. The radium equivalents for 226Ra, 232Th, and 40K in the samples from Ruri were 111 ± 9, 1564 ± 125, and 38 ± 3 Bq/kg, while in Homa, the values were 129 ± 10, 570 ± 46, and 69 ± 5 Bq/kg, respectively. The calculated value of total radium equivalent in Ruri was 1713 ± 137 Bq/kg which was two times higher than that of Homa. 232Th contributed about 74% and 91% to the total radium equivalent in Homa and Ruri, respectively; thus, it was the one with the largest contribution to radiation exposure in both regions. The average indoor annual effective dose rates were 1.74 ± 0.14 and 3.78 ± 0.30 mSv/y in Homa and Ruri, respectively, both of which were above the recommended safety limit of 1 mSv/y.


Sign in / Sign up

Export Citation Format

Share Document