FINITE ELEMENT MODELING TO PREDICT FLEXURAL PERFORMANCE OF STEEL I-SECTION BEAM EXTERNALLY BONDED BY VARIOUS FRP FABRICS: A REVIEW .

Use the fiber reinforced polymers fabric (FRP) in repair and strengthening of bridges, steel structure, etc. This article is review of literature available on flexural behavior of I-section steel beams with externally attached with FRP fabrics. It can be useful to decide which FRP sheet is best to use with steel beam to enhance flexural strength. Also this study comprises of cost comparison of Steel I beam strengthened by various FRP i.e. Basalt-FRP, Glass-FRP and Carbon-FRP. This can be achieved by bonding various FRP sheet at bottom flange, top flange & two faces of web to steel I section beam. It was studied through experimental, analytical, numerical investigation. Most of work is done on carbon-FRP fabric attached to steel beam as compared with Basalt-FRP. Some literature studied properties of FRP, adhesive bond, and fatigue behavior. In experimental method, four point bending test was performed and model were analyzed using FE analysis. From this review, Carbon-FRP gives better performance of Steel I beam as compared with other FRPs.

2018 ◽  
Author(s):  
◽  
Ayman Elzohairy

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] The steel-concrete composite beam represents a structural system widely employed in both buildings and girder bridges. The coupling between steel beams and concrete flanges assures both economic and structural benefits because of quick construction of steel structures and large increase in stiffness due to the presence of concrete. Strengthening with external post-tensioning (PT) force is particularly effective and economical for long-span steel-concrete composite beams and has been employed with great success to increase the bending and shear resistance and correct excessive deflections. Applying external PT force to the steel-concrete composite beam is considered an active strengthening technique that can create permanent internal straining action in the beam which is opposite to the existing straining action due to the applied service loads. The most benefits of using this system of strengthening are an elastic performance to higher loads, higher ultimate capacity, and reduction in deformation under the applied loads. Under service loads, bridge superstructures are subjected to cyclic loads which may cause a premature failure due to fatigue. Therefore, fatigue testing is critical to evaluate existing design methods of steel-concrete composite beams. ... This research presents static and fatigue tests on four steel-concrete composite specimens to evaluate the effect of externally post-tensioned tendons on the ultimate strength and fatigue behavior of composite beams. Fatigue tests are conducted to a million cycles under a four-point bending test. In addition, final static tests are performed on fatigued specimens to evaluate the residual strength of the strengthened specimen. A numerical model is described to predict the fatigue response of the composite beam by considering the fatigue damage in the concrete flange. The accuracy of the developed numerical model is validated using the existing test data. The static test results indicate that the external post-tensioning force improves the flexural behavior of the strengthened specimen by increasing the beam capacity and reducing the tensile stress in the bottom flange of the steel beam. The fatigue results demonstrate that the external post-tensioning significantly decreases the strains in the shear connectors, concrete flange, and steel beam. The tendons demonstrated an excellent fatigue performance, with no indication of distress at the anchors.


2018 ◽  
Vol 7 (4.20) ◽  
pp. 572
Author(s):  
Dr. Mohammed M. Rasheed ◽  
Mr. Ali F. Atshan ◽  
Mr. Kamal Sh. Mahmoud

Seven simply supported steel beams were tested to explain the effect of strengthening by external prestressing strands. All of the beams have the same steel section, clear span length and the strengthening samples which implemented by two external prestressing strands. The tested beams are divided into two categories according to existing of external prestressing strands, the first category consists of one steel beam as a reference, while, the second group deals with steel beams strengthening by external prestressing strands and consists of six steel beams divided according to the eccentricity location of prestressing strand with jacking stress (815 MPa). From experimental results, it was found that the moment curvature curves behavior for the tested beams are stiffer and with less ductility than the reference beams and the ultimate moment capacity is increased with increasing the eccentricity location. While, the maximum radius of curvature at bottom flange decreases with increasing the eccentricity location as compare with the reference beam.   


2021 ◽  
Vol 1042 ◽  
pp. 151-156
Author(s):  
Siti Shahirah Saidin ◽  
Adiza Jamadin ◽  
Sakhiah Abdul Kudus ◽  
Norliyati Mohd Amin

Concrete can be considered as the ultimate construction material since it is the most widely used in the construction materials due to its extensive strength and reasonable cost. Recent years, large investments have been spent for studies on the new advanced materials to enhance the performance and functionality of conventional concrete especially for bridge structure. The application of Ultra-high-performance concrete (UHPC) as advanced materials in bridge application is well established since it able to construct 100m long highway bridge without reinforcement, while fiber reinforced polymers (FRP) required some studies on the optimum composition for bridge application. In this paper, A33 composite FRP from the previous research is studied under 4-point bending test to study the flexural behavior and compared to the UHPC. Three-dimensional finite element analysis of FRP and UHPC I-beam are modelled using Abaqus software to determine and compare the beam deflection and stress. The deflection and stress UHPC and FRP I-beam model being validated with experimental result of four-point bending test and theoretical of equivalent method in previous research. The results from the analytical and experimental are compared and shows good agreements. The presented modeling offers an economical and efficient tool to investigate the structural performance of FRP and UHPC in construction materials.


2020 ◽  
Vol 9 (1) ◽  
pp. 2139-2145

In recent years of construction, steel has been considered as the most commonly used construction materials. Cold Formed steel has many structural benefits like high strength, greater stiffness, high ductility with excellent structural properties and fire resistance. The Cold formed steels are usually used in day by day in residential, commercial and industrial buildings around world. It also reduce the cross section of an element. Steel structure are faster in construction. The main aim of this paper is to study new steel beam. Rather than normal I-shaped beam, it is innovated to form Triangular Hollow Flange Beam (THFB) with slender web using required welded connection to improve the flexural capacity. THFB is also called as Delta Hollow Flange Beam (DHFB). Hollow Tubular Flange Beam provide more strength, stiffness, and stability than a flat plate flange with the same amount of steel. Flanges resist the applied moment, whereas web plates resist the induced shearing force. To improve the flexural resistance the use of the stiffeners also plays an important role, hence the flexural behavior of DHFB with the addition of transverse stiffeners has been investigated in this research work. Initially the section for the research has been chosen, Ultimate load has been calculated manually, Weld used for the sections are designed and they were analyzed through the Finite Element software called ‘ANSYS’. Later, five different specimen which includes specimen with and without stiffeners has been tested experimentally. The flexural test was carried out, along with that other properties like Ductility properties also calculated. From both analytical and experimental study DHFB shows positive results. They were highly used in various application which includes purlins, girts, portal frames and steel frame structures. Steel structure are faster in construction.


2017 ◽  
Vol 5 (3) ◽  
pp. 927-934
Author(s):  
Jong-Myeong Beak ◽  
Jae-Il Sim ◽  
Sang-Su Ha ◽  
Eun Kyum Kim

Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1723
Author(s):  
Yu Sekiguchi ◽  
Chiaki Sato

With an increasing demand for adhesives, the durability of joints has become highly important. The fatigue resistance of adhesives has been investigated mainly for epoxies, but in recent years many other resins have been adopted for structural adhesives. Therefore, understanding the fatigue characteristics of these resins is also important. In this study, the cyclic fatigue behavior of a two-part acrylic-based adhesive used for structural bonding was investigated using a fracture-mechanics approach. Fatigue tests for mode I loading were conducted under displacement control using double cantilever beam specimens with varying bond-line thicknesses. When the fatigue crack growth rate per cycle, da/dN, reached 10−5 mm/cycle, the fatigue toughness reduced to 1/10 of the critical fracture energy. In addition, significant changes in the characteristics of fatigue crack growth were observed varying the bond-line thickness and loading conditions. However, the predominance of the adhesive thickness on the fatigue crack growth resistance was confirmed regardless of the initial loading conditions. The thicker the adhesive bond line, the greater the fatigue toughness.


2021 ◽  
pp. 152808372110003
Author(s):  
M Atta ◽  
A Abu-Sinna ◽  
S Mousa ◽  
HEM Sallam ◽  
AA Abd-Elhady

The bending test is one of the most important tests that demonstrates the advantages of functional gradient (FGM) materials, thanks to the stress gradient across the specimen depth. In this research, the flexural response of functionally graded polymeric composite material (FGM) is investigated both experimentally and numerically. Fabricated by a hand lay-up manufacturing technique, the unidirectional glass fiber reinforced epoxy composite composed of ten layers is used in the present investigation. A 3-D finite element simulation is used to predict the flexural strength based on Hashin’s failure criterion. To produce ten layers of FGM beams with different patterns, the fiber volume fraction ( Vf%) ranges from 10% to 50%. A comparison between FGM beams and conventional composite beams having the same average Vf% is made. The experimental results show that the failure of the FGM beams under three points bending loading (3PB) test is initiated from the tensioned layers, and spread to the upper layer. The spreading is followed by delamination accompanied by shear failures. Finally, the FGM beams fail due to crushing in the compression zone. Furthermore, the delamination failure between the layers has a major effect on the rapidity of the final failure of the FGM beams. The present numerical results show that the gradient pattern of FGM beams is a critical parameter for improving their flexural behavior. Otherwise, Vf% of the outer layers of the FGM beams, i.e. Vf% = 30, 40, or 50%, is responsible for improving their flexural strength.


2021 ◽  
Vol 55 ◽  
pp. 1114-1121
Author(s):  
Daniel Jindra ◽  
Zdeněk Kala ◽  
Jiří Kala ◽  
Stanislav Seitl

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7324
Author(s):  
Thomas Wild ◽  
Timo Platt ◽  
Dirk Biermann ◽  
Marion Merklein

Hot work tool steels (HWS) are widely used for high performance components as dies and molds in hot forging processes, where extreme process-related mechanical and thermal loads limit tool life. With the functionalizing and modification of tool surfaces with tailored surfaces, a promising approach is given to provide material flow control resulting in the efficient die filling of cavities while reducing the process forces. In terms of fatigue properties, the influence of surface modifications on surface integrity is insufficiently studied. Therefore, the potential of the machining processes of high-feed milling, micromilling and grinding with regard to the implications on the fatigue strength of components made of HWS (AISI H11) hardened to 50 ± 1 HRC was investigated. For this purpose, the machined surfaces were characterized in terms of surface topography and residual stress state to determine the surface integrity. In order to analyze the resulting fatigue behavior as a result of the machining processes, a rotating bending test was performed. The fracture surfaces were investigated using fractographic analysis to define the initiation area and to identify the source of failure. The investigations showed a significant influence of the machining-induced surface integrity and, in particular, the induced residual stress state on the fatigue properties of components made of HWS.


Sign in / Sign up

Export Citation Format

Share Document