scholarly journals Pengaruh Interval Waktu Panen terhadap Produksi Biomassa Chlorella sp. dan Melosira sp. untuk Penangkapan Karbon secara Biologi

2020 ◽  
Vol 21 (1) ◽  
pp. 23-30
Author(s):  
Joko Prayitno ◽  
Iklima Ika Rahmasari ◽  
Agus Rifai

ABSTRACTThe aim of this study was to determine the effect of harvesting frequency on the growth of Chlorella sp. and Melosira sp. and on their total biomass production to estimate the amount of carbon fixed during 11 days of culture. Chlorella sp. and Melosira sp. were cultured in f/2 medium in seawater. The biomass was harvested at harvesting intervals of every day (P1), every 2 days (P2) and every 3 days (P3). The biomass of Chlorella sp. harvested at P1, P2 and P3 were 0,49 g/L, 0,43 g/L, and 0,35 g/L, respectively. The highest total biomass production of Chlorella sp. after 11 days of cultivation was obtained from P1 (8,80 g/L), while total biomass production at P2 and P3 were 52% (4,59 g/L) and 30% (3,25 g/L) of that P1, respectively. The biomass harvested at P1, P2 and P3 were 2,41 g/L, 1,40 g/L, and 1,63 g/L. Total biomass production of Melosira sp. during 11 days of cultivation for P1, P2 and P3 were 34,56 g/L, 17,33 g/L, 11,20 g/L, respectively. Our results showed that the highest total biomass production of both Chlorella sp. and Melosira sp. were obtained from harvesting every day. The estimated value of CO2 bio-fixation based on biomass production by Chlorella sp. and Melosira sp. were 1,5 g/L/day and 5,9 g/L/day, respectively.Keywords: biomass, microalgae, Chlorella sp, harvesting interval, Melosira sp, carbon capture ABSTRAKPenelitian ini bertujuan untuk mengetahui pengaruh interval waktu panen biomassa mikroalga terhadap pertumbuhan Chlorella sp. dan Melosira sp., dan perolehan total biomassanya untuk estimasi CO2 yang difiksasi selama kultur 11 hari. Chlorella sp. dan Melosira sp. dikultivasi dalam media air laut yang berisi nutrien f/2. Biomassa mikroalga dipanen dengan interval waktu panen tiap hari (P1), tiap 2 hari (P2) dan tiap 3 hari (P3). Sebagai kontrol (P0), biomassa mikroalga dipanen hanya pada akhir percobaan yaitu di hari ke-11. Kelimpahan sel kultur Chlorella sp. pada perlakuan P1, P2 and P3 masing-masing adalah 2,38x106 sel/mL, 2x106 sel/mL,1,5x106 sel/mL, sedangkan total biomassa yang diperoleh masing-masing adalah 0,49 g/L, 0,43 g/L, dan 0,35 g/L. Total produksi biomassa Chlorella sp. tertinggi yang diperoleh selama 11 hari kultivasi dijumpai pada perlakuan P1 (8,80 g/L), sedangkan total produksi biomassa pada P2 dan P3 hanya 52% (4,59 g/L) dan 30% (3,25 g/L) dari total biomassa P1. Kelimpahan sel Melosira sp. yang dipanen dengan interval P1, P2 dan P3 masing-masing adalah 4,28x106 sel/mL, 2,22x106 sel/mL, dan 2,36x106 sel/mL, dan biomassa yang diperoleh masing-masing adalah 2,41 g/L, 1,40 g/L, dan 1,63 g/L. Total produksi biomassa Melosira sp. yang diperoleh selama 11 hari kultivasi untuk perlakuan P1, P2 dan P3 masing-masing adalah 34,56 g/L,17,33 g/L, dan 11,20 g/L. Hasil percobaan ini menunjukkan bahwa total produksi biomassa tertinggi pada Chlorella sp. dan Melosira sp.dijumpai pada kultur yang dipanen setiap hari. Estimasi serapan karbon berdasarkan biomasa yang dihasilkan oleh Chlorella sp dan Melosira sp. masing-masing adalah 1,5 g/L/hari dan 5,9 g/L/hari.Kata kunci: biomassa, mikroalga, Chlorella sp., interval panen, Melosira sp., penangkapan karbon

Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 593
Author(s):  
Carolina Tenorio ◽  
Róger Moya ◽  
Edgar Ortiz-Malavassi ◽  
Dagoberto Arias

Mortality, diameter at 30 cm over ground level, height, biomass production, and carbon capture (CC) for different tree components (trunk, bark, branches, and leaves) in two locations in Costa Rica, during their first three years and with three plantation spacings (1.0 × 0.5 m, 1.0 × 1.0 m, and 1.0 × 2.0 m) were obtained for Gmelina arborea Roxb. trees growing in short rotation coppice systems (SRC). In addition, regression models were developed to predict biomass production and CC using location, age, spacing, and their interactions. Biomass production was measured by weight of trees without considering dendrometric variables. Results showed that mortality was lower than 15% for one location, with probable high fertility, and almost 85% for the other location. Diameter and height of trees increased with plantation age in both locations. The highest biomass production and CC were observed in the spacings of 1.0 × 0.5 m2 and 1.0 × 1.0 m2, with 20 Mg/ha/year and 8 Mg/ha/year, respectively. The models to predict biomass production in trunk with bark, branches, leaves, total biomass without leaves, and CC in trunk, branch, and total biomass were developed using this equation: Y = β1 + β2 (location × age) + β3 (age) + β4 (spacing). The R2 values varied from 0.66 to 0.84, with error from 0.88 to 10.75 and indicators of goodness of fit from 60 to 83%.


2021 ◽  
pp. 1-10
Author(s):  
Min Huang ◽  
Zui Tao ◽  
Tao Lei ◽  
Fangbo Cao ◽  
Jiana Chen ◽  
...  

Summary The development of high-yielding, short-duration super-rice hybrids is important for ensuring food security in China where multiple cropping is widely practiced and large-scale farming has gradually emerged. In this study, field experiments were conducted over 3 years to identify the yield formation characteristics in the shorter-duration (∼120 days) super-rice hybrid ‘Guiliangyou 2’ (G2) by comparing it with the longer-duration (∼130 days) super-rice hybrid ‘Y-liangyou 1’ (Y1). The results showed that G2 had a shorter pre-heading growth duration and consequently a shorter total growth duration compared to Y1. Compared to Y1, G2 had lower total biomass production that resulted from lower daily solar radiation, apparent radiation use efficiency (RUE), crop growth rate (CGR), and biomass production during the pre-heading period, but the grain yield was not significantly lower than that of Y1 because it was compensated for by the higher harvest index that resulted from slower leaf senescence (i.e., slower decline in leaf area index during the post-heading period) and higher RUE, CGR, and biomass production during the post-heading period. Our findings suggest that it is feasible to reduce the dependence of yield formation on growth duration to a certain extent in rice by increasing the use efficiency of solar radiation through crop improvement and also highlight the need for a greater fundamental understanding of the physiological processes involved in the higher use efficiency of solar radiation in super-rice hybrids.


2006 ◽  
Vol 128 (2) ◽  
pp. 263-273 ◽  
Author(s):  
Susana M.P. Carvalho ◽  
Ep Heuvelink ◽  
Jeremy Harbinson ◽  
Olaf Van Kooten

2021 ◽  
Vol 16 ◽  
pp. 100854
Author(s):  
Yuhao Gong ◽  
Xijie Zheng ◽  
Junchao Huang

Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1942
Author(s):  
Giovanni Preiti ◽  
Antonio Calvi ◽  
Maurizio Romeo ◽  
Giuseppe Badagliacca ◽  
Monica Bacchi

Over two cropping seasons, 2017/18 and 2018/19, an experimental trial was conducted in a typical cereal-growing environment of the Calabrian hills (southern Italy) to study seeding rate (D) and nitrogen fertilization (N) effects on two barley F1 hybrids (Zoo and Jallon) compared to those of a traditional variety (Lutece), assessing the bio-agronomic response. Barley hybrids, gradually introduced into the principal European countries starting in 2010 as winter forage, currently represent a significant part of the EU internal market. Productive performance was evaluated as grain yield for feed and total biomass for silage and/or biogas production. Research results pointed out the greater performance of barley hybrids compared to conventional varieties in terms of both grain and biomass production. On average, barley hybrids vigour mainly manifested itself through a high tillering and a greater number of ears m−2 compared to those of the conventional variety (+24 and +23%, respectively). Furthermore, barley hybrids were characterized by a greater 1000-kernel weight and hectolitre weight than those of the Lutece variety (conventional variety). A significant increase in grain production was observed, increasing density from D150 to D225 rates (+35% and +33%, respectively) which was followed by a decrease in production shifting from D225 to D300 doses. A significant increase in biomass production was as well highlighted for the two hybrids, shifting from D150 to D225 rates (+26% and +27%, respectively). The applied nitrogen dose highlighted a different behaviour between the hybrids and the conventional variety; in particular, the lowest nitrogen dose (N80) negatively influenced the Lutece variety both in terms of grain and biomass production (−9% and −16%, respectively) while the hybrids showed the best agronomic response even at the lowest dose. On average, with the N80 dose, grain yield of Zoo and Jallon was greater than 20% and 16%, while with the N120 dose grain yield was 9% and 7%, respectively. A similar behaviour was found for biomass yield. It should therefore be emphasized that barley hybrids possess high yielding capacities and that such higher grain production can be achieved in a Mediterranean environment by using a lower seed rate (approximately −25%) and a reduced nitrogen dose (approximately −33%) compared with those commonly applied to conventional varieties.


2019 ◽  
Vol 48 (4) ◽  
pp. 1215-1221
Author(s):  
Zikria Zafar ◽  
Fahad Rasheed ◽  
Muhammad Abdullah ◽  
Mir Md Abdus Salam ◽  
Muhammad Mohsin

A greenhouse experiment was conducted to investigate the effects of water deficit on growth and physiological parameters of Ficus benjamina and Conocarpus erectus. The results revealed that all growth parameters such as plant height, stem diameter, no. of leaves, no. of branches and chlorophyll contents significantly decreased under water deficit condition. Interestingly, although leaf, stem and total biomass production and allocation decreased significantly under water deficit, but root biomass production and allocation increased significantly. Similarly, stomatal conductance to water vapor decreased significantly and CO2 assimilation rate remained similar to control under water deficit condition. Resultantly, a significant increase in water use efficiency was evident in both species under water deficit condition. These results suggested that, in spite of a significant decrease in biomass production, young Conocarpus erectus and Ficus benjamina can tolerate water deficit which is due to sustained CO2 assimilation rate and increase in root biomass.


Ecosystems ◽  
2020 ◽  
Author(s):  
Sarah Schwieger ◽  
Juergen Kreyling ◽  
John Couwenberg ◽  
Marko Smiljanić ◽  
Robert Weigel ◽  
...  

Abstract Peatlands are effective carbon sinks as more biomass is produced than decomposed under the prevalent anoxic conditions. Draining peatlands coupled with warming releases stored carbon, and subsequent rewetting may or may not restore the original carbon sink. Yet, patterns of plant production and decomposition in rewetted peatlands and how they compare to drained conditions remain largely unexplored. Here, we measured annual above- and belowground biomass production and decomposition in three different drained and rewetted peatland types: alder forest, percolation fen and coastal fen during an exceptionally dry year. We also used standard plant material to compare decomposition between the sites, regardless of the decomposability of the local plant material. Rewetted sites showed higher root and shoot production in the percolation fen and higher root production in the coastal fen, but similar root and leaf production in the alder forest. Decomposition rates were generally similar in drained and rewetted sites, only in the percolation fen and alder forest did aboveground litter decompose faster in the drained sites. The rewetted percolation fen and the two coastal sites had the highest projected potential for organic matter accumulation. Roots accounted for 23–66% of total biomass production, and belowground biomass, rather than aboveground biomass, was particularly important for organic matter accumulation in the coastal fens. This highlights the significance of roots as main peat-forming element in these graminoid-dominated fen peatlands and their crucial role in carbon cycling, and shows that high biomass production supported the peatlands’ function as carbon sink even during a dry year.


Sign in / Sign up

Export Citation Format

Share Document