scholarly journals An Analytical Investigation of Modular Concrete-filled Square Steel Tubes based on the Strain Compatibility

Author(s):  
Seon-Chee Park ◽  
Won-Kee Hong ◽  
Hyo-Jin Ko

Concrete-filled square steel tubes demonstrating good structural resistance against vertical and lateral loads can be used for modular constructions. To promote the applications of the composite tubes to modular construction, it is important to provide simple but accurate analytical methods that can elucidate the structural behaviour of the composite tubes. A number of international design codes are known to calculate the flexural load bearing capacity of the concrete-filled square steel tubes. Some, however, are not predicting the behaviour of the composite tubes accurately. An analytical investigation of concrete-filled square steel tubes was presented in this paper. A strain compatibility based design method considering confinement effect of concrete in tubes was proposed to estimate the flexural strength of composite steel tube filled with concrete. Nominal moment capacities estimated in accordance with the standards of AIJ(Japan), AISC(USA), Eurocode4(Europe) and KSSC(Korea) were compared with the analytical value obtained using the strain compatibility based design method. Since the design method with strain compatibility proposed in the study reflects the concrete confinement with accurate estimation of the neutral axis of composite tube section, the flexural moment capacity of composite tube section can be accurately obtained. The test results of other researchers including Lu and Kennedy were used to verify the reliability of the proposed design method. These experimental results were shown to be the best correlated with the analytical results provided by the proposed method in this paper than any other analytical methods proposed by the international codes that were used to calculate flexural load bearing capacity. The 6% of errors were demonstrated by the proposed approach while bigger errors were observed in the analytical calculations of other design codes as large as 17%.

2017 ◽  
Vol 2017 ◽  
pp. 1-20
Author(s):  
Ulf Arne Girhammar ◽  
Bo Källsner

The authors present an experimental and analytical study of slotted-in connections for joining walls in the Masonite flexible building (MFB) system. These connections are used for splicing wall elements and for tying down uplifting forces and resisting horizontal shear forces in stabilizing walls. The connection plates are inserted in a perimeter slot in the PlyBoard™ panel (a composite laminated wood panel) and fixed mechanically with screw fasteners. The load-bearing capacity of the slotted-in connection is determined experimentally and derived analytically for different failure modes. The test results show ductile postpeak load-slip characteristics, indicating that a plastic design method can be applied to calculate the horizontal load-bearing capacity of this type of shear walls.


Author(s):  
Mohammad Reza Ghaemdoust ◽  
Omid Yousefi ◽  
Kambiz Narmashiri ◽  
Masoumeh Karimian

In view of development and repair costs, support of structures is imperative. Several factors, for example, design and calculation errors, absence of appropriate installation, change of structures application, exhaustion, seismic tremor, fire and natural conditions diminish their strength. In such cases, structures have need of rehabilitation and restoration to achieve their original performance. One of the most up to date materials for retrofitting is carbon fiber reinforced polymer (CFRP) that can provide an amount of restriction to postpone buckling of thin steel walls. This paper provides a numerical and experimental investigation on CFRP strengthened short steel tubes with initial horizontal and vertical deficiency under compression. Ten square and circular specimens were tested to study effects of the following parameters: (1) position of deficiency, horizontal or vertical; (2) tube shape, square or circular; (3) CFRP strengthening. In the experiments, axial static loading was gradually applied and for the numerical study three-dimensional (3D) static nonlinear analysis method using ABAQUS software was performed. The results show that deficiency reduces load-bearing capacity of steel columns and the impact of horizontal deficiency is higher than the impact of vertical deficiency, in both square and circular tubes. Use of CFRP materials for strengthening of short steel columns with initial deficiency indicates that fibers play a considerable role on increasing load bearing capacity, reducing stress at the damage location, preventing deformation caused by deficiency and delaying local buckling. Both numerical and experimental outcomes are in good agreement, which underlines the accuracy of the models adopted.


2010 ◽  
Vol 16 (2) ◽  
pp. 230-236 ◽  
Author(s):  
C. Douglas Goode ◽  
Artiomas Kuranovas ◽  
Audronis Kazimieras Kvedaras

The paper presents the analysis of the experimental data of 1817 on concrete‐filled steel tubes ‐ CFSTs. These results are compared with the predicted results of the load‐bearing capacity of calculations of slender elements according to the methods suggested by Eurocode 4. The following types of tested CFSTs were analysed: circular and rectangular hollow section stub and long columns fully filled with concrete, which were with or without applied moments at the ends of specimen. During the results obtained in the result of the tests on the load bearing capacity for circular concrete‐filled steel tubular columns correspond with the calculated values based on methods presented by Eurocode 4. The experimental values of load bearing capacity for members of concrete‐filled rectangular hollow sections agree very well with the theoretical values where the concrete cylinder strength is below 75 N/mm2. The analysis demonstrated that preloading of concrete‐filled hollow section members does not influence the load bearing capacity. This paper also presents the examination of stress state distribution for concrete‐filled hollow section members, influence of concrete preloading and of longitudinal stress strain curves. Santrauka Straipsnyje aptariami 1817 betonšerdžiu plieniniu vamzdiniu strypu eksperimentiniai duomenys. Šie duomenys lyginami su rezultatais, gautais remiantis Eurocode 4 pateiktais kompozitiniu elementu laikomosios galios nustatymo metodais. Analizuojami tokie betonšerdžiu plieniniu strypu bandiniu tipai: pilnavidures trumpos arba liaunos apskritojo ir stačiakampio skerspjūvio vamzdines betonšerdes plienines kolonos su ju galuose veikiančiu lenkiamuoju momentu arba be jo. Apskritojo skerspjūvio betonšerdžiu kolonu bandymu metu gautieji laikomosios galios rezultatai atitinka remiantis Eurocode 4 pateiktais metodais apskaičiuotasias ju reikšmes. Stačiakampio skerspjūvio betonšerdžiu elementu laikomosios galios bandymais rastosios reikšmes labai gerai atitinka teorines reikšmes, kai šerdies betono ritininis stipris nesiekia 75 N/mm2. Analizuojant nustatyta, kad išankstinis betonšerdžiu elementu apkrovimas neturi beveik jokio poveikio elementu laikomajai galiai. Šiame straipsnyje taip pat nagrinejamas betonšerdžiu elementu itempiu būviu pasiskirstymas, betono apspaudimo poveikis bei išilginiu deformaciju ir itempiu kreives.


2010 ◽  
Vol 42 ◽  
pp. 255-258
Author(s):  
Hong Chao Fan ◽  
Jing Lin Tong ◽  
Xin Hua Yi ◽  
Jin Bao He ◽  
Jian Xi Yang

The oil film have many excellences such as bigger load bearing capacity, longer life, wider velocity range, lower friction etc. The traditional design method is experience test. Even the design parameters could meet the application requirements, but they can not exert the best performance of the oil film bearing. The relationship between load bearing capacity and materials, lubricants, design parameters and structural characteristics of oil film bearing was analysed. To improve the load capacity and run at the optimal state, the objective function was built to optimize the main parameters. Optimization results showed that the load bearing capacity has been greatly improved.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 795 ◽  
Author(s):  
Fengjie Zhang ◽  
Junwu Xia ◽  
Guo Li ◽  
Zhen Guo ◽  
Hongfei Chang ◽  
...  

This work aimed to investigate the effects of steel tube corrosion on the axial ultimate load-bearing capacity (AULC) of circular thin-walled concrete-filled steel tubular (CFST) members. Circular thin-walled CFST stub column specimens were made of steel tubes with various wall-thicknesses. These CFST column specimens were subjected to an accelerated corrosion test, where the steel tubes were corroded to different degrees of corrosion. Then, these CFST specimens with corroded steel tubes experienced an axial static loading test. Results show that the failure patterns of circular thin-walled CFST stub columns with corroded steel tubes are different from those of the counterpart CFST columns with ordinary wall-thickness steel tubes, which is a typical failure mode of shear bulging with slight local outward buckling. The ultimate strength and plastic deformation capacity of the CFST specimens decreased with the increasing degree of steel corrosion. The failure modes of the specimens still belonged to ductile failure because of the confinement of outer steel tube. The degree of steel tube corrosion, diameter-to-thickness ratio, and confinement coefficient had substantial influences on the AULC and the ultimate compressive strength of circular thin-walled CFST stub columns. A simple AULC prediction model for corroded circular thin-walled CFST stub columns was presented through the regression of the experimental data and parameter analysis.


2011 ◽  
Vol 147 ◽  
pp. 99-104 ◽  
Author(s):  
Moftah Almadini ◽  
Dusan Kovacevic ◽  
Vlastimir Radonjanin

Experiments on square and circular steel columns filled with light-weight concrete and high strength concrete have been conducted to investigate the contribution of these types of concrete to load bearing capacity of short composite columns. The aim of this research was to determine the effect of two types of concrete filling on behaviour of the composite columns. Thirteen specimens were divided in two groups: steel tubes filled with different type of concrete, with or without reinforcement and RC columns with same dimensions and shape, made of same type of concrete. Comparison was made between load bearing capacity of the steel tubes filled with light-weight concrete, and high strength concrete (with and without reinforcement). All specimens were tested by axial compression until to the failure state realization. Factors which influence the behavior and failure mode, ultimate strength, deflections and stress-strain relation were discussed.


2020 ◽  
Vol 62 (1) ◽  
pp. 55-60
Author(s):  
Per Heyser ◽  
Vadim Sartisson ◽  
Gerson Meschut ◽  
Marcel Droß ◽  
Klaus Dröder

2017 ◽  
Vol 68 (1) ◽  
pp. 94-100
Author(s):  
Oana Tanculescu ◽  
Adrian Doloca ◽  
Raluca Maria Vieriu ◽  
Florentina Mocanu ◽  
Gabriela Ifteni ◽  
...  

The load-bearing capacity and fracture pattern of direct inlay-retained FRC FDPs with two different cross-sectional designs of the ponticwere tested. The aim of the study was to evaluate a new fibre disposition. Two types of composites, Filtek Bulk Fill Posterior Restorative and Filtek Z250 (3M/ESPE, St. Paul, MN, USA), and one braided polyethylene fibre, Construct (Kerr, USA) were used. The results of the study suggested that the new tested disposition of the fibres prevented in some extend the delamination of the composite on buccal and facial sides of the pontic and increased the load-bearing capacity of the bridges.


Sign in / Sign up

Export Citation Format

Share Document