scholarly journals A Customized Non-Exclusive Clustering Algorithm for News Recommendation Systems

2019 ◽  
Vol 27 (1) ◽  
pp. 368-379 ◽  
Author(s):  
Asghar Darvishy ◽  
Hamidah Ibrahim ◽  
Fatimah Sidi ◽  
Aida Mustapha

Clustering is one of the main tasks in machine learning and data mining and is being utilized in many applications including news recommendation systems. In this paper, we propose a new non-exclusive clustering algorithm named Ordered Clustering (OC) with the aim is to increase the accuracy of news recommendation for online users. The basis of OC is a new initialization technique that groups news items into clusters based on the highest similarities between news items to accommodate news nature in which a news item can belong to different categories. Hence, in OC, multiple memberships in clusters are allowed. An experiment is carried out using a real dataset which is collected from the news websites. The experimental results demonstrated that the OC outperforms the k-means algorithm with respect to Precision, Recall, and F1-Score.

2021 ◽  
Vol 8 (10) ◽  
pp. 43-50
Author(s):  
Truong et al. ◽  

Clustering is a fundamental technique in data mining and machine learning. Recently, many researchers are interested in the problem of clustering categorical data and several new approaches have been proposed. One of the successful and pioneering clustering algorithms is the Minimum-Minimum Roughness algorithm (MMR) which is a top-down hierarchical clustering algorithm and can handle the uncertainty in clustering categorical data. However, MMR tends to choose the category with less value leaf node with more objects, leading to undesirable clustering results. To overcome such shortcomings, this paper proposes an improved version of the MMR algorithm for clustering categorical data, called IMMR (Improved Minimum-Minimum Roughness). Experimental results on actual data sets taken from UCI show that the IMMR algorithm outperforms MMR in clustering categorical data.


2019 ◽  
Vol 8 (4) ◽  
pp. 6036-6040

Data Mining is the foremost vital space of analysis and is pragmatically utilized in totally different domains, It becomes a highly demanding field because huge amounts of data have been collected in various applications. The database can be clustered in more number of ways depending on the clustering algorithm used, parameter settings and other factors. Multiple clustering algorithms can be combined to get the final partitioning of data which provides better clustering results. In this paper, Ensemble hybrid KMeans and DBSCAN (HDKA) algorithm has been proposed to overcome the drawbacks of DBSCAN and KMeans clustering algorithms. The performance of the proposed algorithm improves the selection of centroid points through the centroid selection strategy.For experimental results we have used two dataset Colon and Leukemia from UCI machine learning repository.


2011 ◽  
Vol 403-408 ◽  
pp. 1834-1838
Author(s):  
Jing Zhao ◽  
Chong Zhao Han ◽  
Bin Wei ◽  
De Qiang Han

Discretization of continuous attributes have played an important role in machine learning and data mining. They can not only improve the performance of the classifier, but also reduce the space of the storage. Univariate Marginal Distribution Algorithm is a modified Evolutionary Algorithms, which has some advantages over classical Evolutionary Algorithms such as the fast convergence speed and few parameters need to be tuned. In this paper, we proposed a bottom-up, global, dynamic, and supervised discretization method on the basis of Univariate Marginal Distribution Algorithm.The experimental results showed that the proposed method could effectively improve the accuracy of classifier.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Ziqi Jia ◽  
Ling Song

The k-prototypes algorithm is a hybrid clustering algorithm that can process Categorical Data and Numerical Data. In this study, the method of initial Cluster Center selection was improved and a new Hybrid Dissimilarity Coefficient was proposed. Based on the proposed Hybrid Dissimilarity Coefficient, a weighted k-prototype clustering algorithm based on the hybrid dissimilarity coefficient was proposed (WKPCA). The proposed WKPCA algorithm not only improves the selection of initial Cluster Centers, but also puts a new method to calculate the dissimilarity between data objects and Cluster Centers. The real dataset of UCI was used to test the WKPCA algorithm. Experimental results show that WKPCA algorithm is more efficient and robust than other k-prototypes algorithms.


2010 ◽  
Vol 121-122 ◽  
pp. 447-452
Author(s):  
Qing Zhang Chen ◽  
Yu Jie Pei ◽  
Yan Jin ◽  
Li Yan Zhang

As the current personalized recommendation systems of Internet bookstore are limited too much in function, this paper build a kind of Internet bookstore recommendation system based on “Strategic Data Mining”, which can provide personalized recommendations that they really want. It helps us to get the weight attribute of type of book by using AHP, the weight attributes spoken on behalf of its owner, and we add it in association rules. Then the method clusters the customer and type of book, and gives some strategies of personalized recommendation. Internet bookstore recommendation system is implemented with ASP.NET in this article. The experimental results indicate that the Internet bookstore recommendation system is feasible.


2018 ◽  
Vol 7 (2.32) ◽  
pp. 420
Author(s):  
Dr P.V.R.D. Prasad Rao ◽  
S Varakumari ◽  
Vineetha B ◽  
V Satish

The rising power of technology has intensely improved the information storage, collection, and manipulation ability. As the information is growing very rapid along with its complexness, data analysis has become more important. The aim of this paper is to recommend products to the user which are more likely to be purchased. This paper, first describes about different techniques for recommendation and the research regarding recommendation system, then suggests a better approach for a good recommendation system and explains the results of that approach. Here, a combination of k-means clustering algorithm and apriori algorithm on transactional dataset so that a better recommendation list can be obtained. 


2011 ◽  
Vol 121-126 ◽  
pp. 4675-4679
Author(s):  
Ming Wei Leng ◽  
Xiao Yun Chen ◽  
Jian Jun Cheng ◽  
Long Jie Li

In many data mining domains, labeled data is very expensive to generate, how to make the best use of labeled data to guide the process of unlabeled clustering is the core problem of semi-supervised clustering. Most of semi-supervised clustering algorithms require a certain amount of labeled data and need set the values of some parameters, different values maybe have different results. In view of this, a new algorithm, called semi-supervised clustering algorithm based on small size of labeled data, is presented, which can use the small size of labeled data to expand labeled dataset by labeling their k-nearest neighbors and only one parameter. We demonstrate our clustering algorithm with three UCI datasets, compared with SSDBSCAN[4] and KNN, the experimental results confirm that accuracy of our clustering algorithm is close to that of KNN classification algorithm.


Implementation of data mining techniques in elearning is a trending research area, due to the increasing popularity of e-learning systems. E-learning systems provide increased portability, convenience and better learning experience. In this research, we proposed two novel schemes for upgrading the e-learning portals based on the learner’s data for improving the quality of e-learning. The first scheme is Learner History-based E-learning Portal Up-gradation (LHEPU). In this scheme, the web log history data of the learner is acquired. Using this data, various useful attributes are extracted. Using these attributes, the data mining techniques like pattern analysis, machine learning, frequency distribution, correlation analysis, sequential mining and machine learning techniques are applied. The results of these data mining techniques are used for the improvement of e-learning portal like topic recommendations, learner grade prediction, etc. The second scheme is Learner Assessment-based E-Learning Portal Up-gradation (LAEPU). This scheme is implemented in two phases, namely, the development phase and the deployment phase. In the development phase, the learner is made to attend a short pretraining program. Followed by the program, the learner must attend an assessment test. Based on the learner’s performance in this test, the learners are clustered into different groups using clustering algorithm such as K-Means clustering or DBSCAN algorithms. The portal is designed to support each group of learners. In the deployment phase, a new learner is mapped to a particular group based on his/her performance in the pretraining program.


2018 ◽  
Author(s):  
Quazi Abidur Rahman ◽  
Tahir Janmohamed ◽  
Meysam Pirbaglou ◽  
Hance Clarke ◽  
Paul Ritvo ◽  
...  

BACKGROUND Measuring and predicting pain volatility (fluctuation or variability in pain scores over time) can help improve pain management. Perceptions of pain and its consequent disabling effects are often heightened under the conditions of greater uncertainty and unpredictability associated with pain volatility. OBJECTIVE This study aimed to use data mining and machine learning methods to (1) define a new measure of pain volatility and (2) predict future pain volatility levels from users of the pain management app, Manage My Pain, based on demographic, clinical, and app use features. METHODS Pain volatility was defined as the mean of absolute changes between 2 consecutive self-reported pain severity scores within the observation periods. The k-means clustering algorithm was applied to users’ pain volatility scores at the first and sixth month of app use to establish a threshold discriminating low from high volatility classes. Subsequently, we extracted 130 demographic, clinical, and app usage features from the first month of app use to predict these 2 volatility classes at the sixth month of app use. Prediction models were developed using 4 methods: (1) logistic regression with ridge estimators; (2) logistic regression with Least Absolute Shrinkage and Selection Operator; (3) Random Forests; and (4) Support Vector Machines. Overall prediction accuracy and accuracy for both classes were calculated to compare the performance of the prediction models. Training and testing were conducted using 5-fold cross validation. A class imbalance issue was addressed using a random subsampling of the training dataset. Users with at least five pain records in both the predictor and outcome periods (N=782 users) are included in the analysis. RESULTS k-means clustering algorithm was applied to pain volatility scores to establish a threshold of 1.6 to differentiate between low and high volatility classes. After validating the threshold using random subsamples, 2 classes were created: low volatility (n=611) and high volatility (n=171). In this class-imbalanced dataset, all 4 prediction models achieved 78.1% (611/782) to 79.0% (618/782) in overall accuracy. However, all models have a prediction accuracy of less than 18.7% (32/171) for the high volatility class. After addressing the class imbalance issue using random subsampling, results improved across all models for the high volatility class to greater than 59.6% (102/171). The prediction model based on Random Forests performs the best as it consistently achieves approximately 70% accuracy for both classes across 3 random subsamples. CONCLUSIONS We propose a novel method for measuring pain volatility. Cluster analysis was applied to divide users into subsets of low and high volatility classes. These classes were then predicted at the sixth month of app use with an acceptable degree of accuracy using machine learning methods based on the features extracted from demographic, clinical, and app use information from the first month.


2020 ◽  
Vol 34 (04) ◽  
pp. 6869-6876
Author(s):  
Yiqun Zhang ◽  
Yiu-ming Cheung

Clustering ordinal data is a common task in data mining and machine learning fields. As a major type of categorical data, ordinal data is composed of attributes with naturally ordered possible values (also called categories interchangeably in this paper). However, due to the lack of dedicated distance metric, ordinal categories are usually treated as nominal ones, or coded as consecutive integers and treated as numerical ones. Both these two common ways will roughly define the distances between ordinal categories because the former way ignores the order relationship and the latter way simply assigns identical distances to different pairs of adjacent categories that may have intrinsically unequal distances. As a result, they may produce unsatisfactory ordinal data clustering results. This paper, therefore, proposes a novel ordinal data clustering algorithm, which iteratively learns: 1) The partition of ordinal dataset, and 2) the inter-category distances. To the best of our knowledge, this is the first attempt to dynamically adjust inter-category distances during the clustering process to search for a better partition of ordinal data. The proposed algorithm features superior clustering accuracy, low time complexity, fast convergence, and is parameter-free. Extensive experiments show its efficacy.


Sign in / Sign up

Export Citation Format

Share Document