Prediksi Tinggi Permukaan Air Waduk Menggunakan Artificial Neural Network Berbasis Sliding Window

2021 ◽  
Vol 5 (1) ◽  
pp. 39-44
Author(s):  
Dwi Kartini ◽  
Friska Abadi ◽  
Triando Hamonangan Saragih

The water level in the reservoir is an important factor in the operation of a hydroelectric turbine to control water overflow so that there is no excessive degradation. This water control has an influence on the performance and production of hydroelectric energy. The daily reservoir water level (tpaw) recording of PLTA Riam Kanan is carried out through a daily direct measurement and observation process on the reservoir measuring board which is recapitulated every month in excel form. This time series historical data continues to grow every day to become a data warehouse that is still useless if only stored. Extracting knowledge from the data warehouse can be done using one of the artificial neural network data mining techniques, namely backpropagation to predict the next day's tpaw. Historical data for the tpaw time series is presented with a sliding window concept approach based on the window sizes used, namely 7, 14, 21 and 28. The window size represents the number of days as an input layer variable in the backpropagation network architecture to predict the next day's tpaw. Some backpropagation network testing is carried out using a combination of the number of window sizes against the comparison of the amount of training data and test data on the network. The prediction results obtained with the smallest mean squared error (mse) in network testing is 0.000577 as a high accuracy value of the prediction results. The network architecture with the smallest mse using 28 input layers, 10 hidden layers and 1 output layer can be a knowledge that can help the hydropower plant as an alternative in making turbine operation decisions based on the predicted results of reservoir water level.

Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2011
Author(s):  
Pablo Páliz Larrea ◽  
Xavier Zapata Ríos ◽  
Lenin Campozano Parra

Despite the importance of dams for water distribution of various uses, adequate forecasting on a day-to-day scale is still in great need of intensive study worldwide. Machine learning models have had a wide application in water resource studies and have shown satisfactory results, including the time series forecasting of water levels and dam flows. In this study, neural network models (NN) and adaptive neuro-fuzzy inference systems (ANFIS) models were generated to forecast the water level of the Salve Faccha reservoir, which supplies water to Quito, the Capital of Ecuador. For NN, a non-linear input–output net with a maximum delay of 13 days was used with variation in the number of nodes and hidden layers. For ANFIS, after up to four days of delay, the subtractive clustering algorithm was used with a hyperparameter variation from 0.5 to 0.8. The results indicate that precipitation was not influencing input in the prediction of the reservoir water level. The best neural network and ANFIS models showed high performance, with a r > 0.95, a Nash index > 0.95, and a RMSE < 0.1. The best the neural network model was t + 4, and the best ANFIS model was model t + 6.


2011 ◽  
Vol 255-260 ◽  
pp. 3620-3625
Author(s):  
Hai Wei ◽  
Hua Shu Yang ◽  
Liang Wu ◽  
Yue Gui

There are many factors, such as climate, flood, material, geology, structure, management, to influence dam safety. So dam safety evaluation, involving many fields, is very complicated, and very difficult to establish mathematic model for assessment. Artificial Neural Network (ANN) has many obvious advantages to deal with these problems influenced by multi-factor, consequently is widely used in engineering fields. This paper considered water level, temperature, main factors influencing dam deformation, as random variables, employed ANN and statistical model to establish performance function of dam hidden trouble deformation and abnormal deformation. Then reliability theory was used to analyze dam safety reliability and sensitivity. The results show that temperature has great effect on probability of dam hidden trouble deformation and abnormal deformation than reservoir water level, due to great variability of temperature. Change of Reliability index of dam is contrary to reservoir water level. Temperature, especially average temperature in 10 days and 5 days, has great effect on sensitivity of reliability index than water level.


2015 ◽  
Vol 77 (22) ◽  
Author(s):  
Wan Hussain Wan Ishak ◽  
Ku Ruhana Ku-Mahamud ◽  
Norita Md Norwawi

Reservoir is one of the structural approaches for flood mitigation and water supply.  During heavy raining season, reservoir operator has to determine fast and accurate decision in order to maintain both reservoir and downstream river water level.  In contrast to less rainfall season, the reservoir needs to impound water for the water supply purposes. This study is aimed to model human expert decision making specifically on reservoir water release decision. Reservoir water release decision is crucial as reservoir serve multi purposes.  The reservoir water release decision pattern that comprises of upstream rainfall and current reservoir water level has been form using sliding window technique.  The computational intelligence method called artificial neural network was used to model the decision making.  


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Bing Han ◽  
Bin Tong ◽  
Jinkai Yan ◽  
Chunrong Yin ◽  
Liang Chen ◽  
...  

Reservoir landslide is a type of commonly seen geological hazards in reservoir area and could potentially cause significant risk to the routine operation of reservoir and hydropower station. It has been accepted that reservoir landslides are mainly induced by periodic variations of reservoir water level during the impoundment and drawdown process. In this study, to better understand the deformation characters and controlling factors of the reservoir landslide, a multiparameter-based monitoring program was conducted on a reservoir landslide—the Hongyanzi landslide located in Pubugou reservoir area in the southwest of China. The results indicated that significant deformation occurred to the landslide during the drawdown period; otherwise, the landslide remained stable. The major reason of reservoir landslide deformation is the generation of seepage water pressure caused by the rapidly growing water level difference inside and outside of the slope. The influences of precipitation and earthquake on the slope deformation of the Hongyanzi landslide were insignificant.


2021 ◽  
Vol 11 (4) ◽  
pp. 1381
Author(s):  
Xiuzhen Li ◽  
Shengwei Li

Forecasting the development of large-scale landslides is a contentious and complicated issue. In this study, we put forward the use of multi-factor support vector regression machines (SVRMs) for predicting the displacement rate of a large-scale landslide. The relative relationships between the main monitoring factors were analyzed based on the long-term monitoring data of the landslide and the grey correlation analysis theory. We found that the average correlation between landslide displacement and rainfall is 0.894, and the correlation between landslide displacement and reservoir water level is 0.338. Finally, based on an in-depth analysis of the basic characteristics, influencing factors, and development of landslides, three main factors (i.e., the displacement rate, reservoir water level, and rainfall) were selected to build single-factor, two-factor, and three-factor SVRM models. The key parameters of the models were determined using a grid-search method, and the models showed high accuracies. Moreover, the accuracy of the two-factor SVRM model (displacement rate and rainfall) is the highest with the smallest standard error (RMSE) of 0.00614; it is followed by the three-factor and single-factor SVRM models, the latter of which has the lowest prediction accuracy, with the largest RMSE of 0.01644.


Sign in / Sign up

Export Citation Format

Share Document