scholarly journals DNA-MARKING OF THE NOVEL PVY RESISTANCE GENE INTROGRESSED INTO GENOME OF CULTIVATED POTATOES FROM WILD ALLOTETRAPLOID SPECIES SOLANUM STOLONIFERUM

Author(s):  
E. V. Voronkova ◽  
V. I. Luksha ◽  
A. V. Levy ◽  
O. N. Gukasian ◽  
A. P. Yermishin
Author(s):  
A. V. Levy ◽  
A. S. Ageeva

The germplasm of valuable for breeding wild allotetraploid potato species Solanum stoloniferumis rarely used because of pre- and postzygotic reproductive barriers with cultivated potatoes. One of the factors that complicate crosses between S. stoloniferum and S. tuberosumis unilateral incompatibility (UI).Here, we present the results of application of original SvSv-lines for overcoming UI in crosses with S. stoloniferum and of generating male fertile hybrids derived from this species. SvSv-lines are F2 S. tuberosum dihaploid× S. verrucosum that are male fertile and have D/γ-type cytoplasm. Since they are hybrids on homozygous for Svgene from S. verrucosum, they do not form SvSv-lines and have the same ability for elimination of prezygotic incompatibility as this species.As a result of pollination seven SvSv-lines were pollinated by 26 accessions of S. stoloniferum and a lot of hybrid seeds have been produced.In spite of low percentage of germination (1.9 %), formed 40 seedlings of interspecific hybrids. The experiment on hybridization between SvSv-lines and S. stoloniferum has been reproduced with the accession PI205522 of the wild species, which had DNA markers of PVY and LB resistance genes and “sterile” type cytoplasm W/γ: 950 hybrid seeds and 12 viable seedlings were produced. The genome of the seedlings was doubled by colchicine treatment, which generated hexaploids (F1) that formed highly fertile pollen and set seeds from self-pollination. We were able to cross them as females with the variety Katahdin. Produced pentaploid hybrids (BC1) were readily backcrossed by potato variety Quarta. Seedlings of BC2 were then backcrossed by potato varieties as female and, some of them, as male parents. The substantial part of F1, BC1 and BC2 plants of interspecific hybrids were male fertile (produced a lot functionally fertile pollen).


2003 ◽  
Vol 107 (7) ◽  
pp. 1169-1173 ◽  
Author(s):  
S. L. Hughes ◽  
P. J. Hunter ◽  
A. G. Sharpe ◽  
M. J. Kearsey ◽  
D. J. Lydiate ◽  
...  

Author(s):  
Gongli Zong ◽  
Chuanqing Zhong ◽  
Jiafang Fu ◽  
Yu Zhang ◽  
Peipei Zhang ◽  
...  

Abstract Background Carbapenem resistant Acinetobacter species have caused great difficulties in clinical therapy in the worldwide. Here we describe an Acinetobacter johnsonii M19 with a novel blaOXA-23 containing transposon Tn6681 on the conjugative plasmid pFM-M19 and the ability to transferand carbapenem resistance. Methods A. johnsonii M19 was isolated under selection with 8 mg/L meropenem from hospital sewage, and the minimum inhibitory concentrations (MICs) for the representative carbapenems imipenem, meropenem and ertapenem were determined. The genome of A. johnsonii M19 was sequenced by PacBio RS II and Illumina HiSeq 4000 platforms. A homologous model of OXA-23 was generated, and molecular docking models with imipenem, meropenem and ertapenem were constructed by Discovery Studio 2.0. Type IV secretion system and conjugation elements were identified by the Pathosystems Resource Integration Center (PATRIC) server and the oriTfinder. Mating experiments were performed to evaluate transfer of OXA-23 to Escherichia coli 25DN. Results MICs of A. johnsonii M19 for imipenem, meropenem and ertapenem were 128 mg/L, 48 mg/L and 24 mg/L, respectively. Genome sequencing identified plasmid pFM-M19, which harbours the carbapenem resistance gene blaOXA-23 within the novel transposon Tn6681. Molecular docking analysis indicated that the elongated hydrophobic tunnel of OXA-23 provides a hydrophobic environment and that Lys-216, Thr-217, Met-221 and Arg-259 were the conserved amino acids bound to imipenem, meropenem and ertapenem. Furthermore, pFM-M19 could transfer blaOXA-23 to E. coli 25DN by conjugation, resulting in carbapenem-resistant transconjugants. Conclusions Our investigation showed that A. johnsonii M19 is a source and disseminator of blaOXA-23 and carbapenem resistance. The ability to transfer blaOXA-23 to other species by the conjugative plasmid pFM-M19 raises the risk of spread of carbapenem resistance. Graphic abstract The carbapenem resistance gene blaOXA-23 is disseminated by a conjugative plasmid containing the novel transposon Tn6681 in Acinetobacter johnsonii M19.


Plant Disease ◽  
2020 ◽  
pp. PDIS-06-20-1367 ◽  
Author(s):  
Hari S. Karki ◽  
Shelly H. Jansky ◽  
Dennis A. Halterman

Late blight (LB) of potato is considered one of the most devastating plant diseases in the world. Most cultivated potatoes are susceptible to this disease. However, wild relatives of potatoes are an excellent source of LB resistance. We screened 384 accessions of 72 different wild potato species available from the U.S. Potato GeneBank against the LB pathogen Phytophthora infestans in a detached leaf assay (DLA). P. infestans isolates US-23 and NL13316 were used in the DLA to screen the accessions. Although all plants in 273 accessions were susceptible, all screened plants in 39 accessions were resistant. Resistant and susceptible plants were found in 33 accessions. All tested plants showed a partial resistance phenotype in two accessions, segregation of resistant and partial resistant plants in nine accessions, segregation of partially resistant and susceptible plants in four accessions, and segregation of resistant, partially resistant, and susceptible individuals in 24 accessions. We found several species that were never before reported to be resistant to LB: Solanum albornozii, S. agrimoniifolium, S. chomatophilum, S. ehrenbergii, S. hypacrarthrum, S. iopetalum, S. palustre, S. piurae, S. morelliforme, S. neocardenasii, S. trifidum, and S. stipuloideum. These new species could provide novel sources of LB resistance. P. infestans clonal lineage-specific screening of selected species was conducted to identify the presence of RB resistance. We found LB resistant accessions in Solanum verrucosum, Solanum stoloniferum, and S. morelliforme that were susceptible to the RB overcoming isolate NL13316, indicating the presence of RB-like resistance in these species.


2020 ◽  
Vol 65 (6) ◽  
pp. 1051-1060
Author(s):  
Cong Cheng ◽  
Yuanyuan Ying ◽  
Danying Zhou ◽  
Licheng Zhu ◽  
Junwan Lu ◽  
...  

AbstractDue to the inappropriate use of florfenicol in agricultural practice, florfenicol resistance has become increasingly serious. In this work, we studied the novel florfenicol resistance mechanism of an animal-derived Leclercia adecarboxylata strain R25 with high-level florfenicol resistance. A random genomic DNA library was constructed to screen the novel florfenicol resistance gene. Gene cloning, gene knockout, and complementation combined with the minimum inhibitory concentration (MIC) detection were conducted to determine the function of the resistance-related gene. Sequencing and bioinformatics methods were applied to analyze the structure of the resistance gene-related sequences. Finally, we obtained a regulatory gene of an RND (resistance-nodulation-cell division) system, ramA, that confers resistance to florfenicol and other antibiotics. The ramA-deleted variant (LA-R25ΔramA) decreased the level of resistance against florfenicol and several other antibiotics, while a ramA-complemented strain (pUCP24-prom-ramA/LA-R25ΔramA) restored the drug resistance. The whole-genome sequencing revealed that there were five RND efflux pump genes (mdtABC, acrAB, acrD, acrEF, and acrAB-like) encoded over the chromosome, and ramA located upstream of the acrAB-like genes. The results of this work suggest that ramA confers resistance to florfenicol and other structurally unrelated antibiotics, presumably by regulating the RND efflux pump genes in L. adecarboxylata R25.


2010 ◽  
Vol 28 (4) ◽  
pp. 1188-1195 ◽  
Author(s):  
Lihua Zhao ◽  
Yanhui Sun ◽  
Xiaoqing Li ◽  
Xianqing Jin ◽  
Youhua Xu ◽  
...  

2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Juliette R. K. Wipf ◽  
Matthew C. Riley ◽  
Stephen A. Kania ◽  
David A. Bemis ◽  
Sabrina Andreis ◽  
...  

ABSTRACT Whole-genome sequencing of Staphylococcus xylosus strain JW2311 from bovine mastitis milk identified the novel 49.3-kb macrolide-lincosamide-streptogramin B (MLSB) resistance plasmid pJW2311. It contained the macrolide resistance gene mph(C), the macrolide-streptogramin B resistance gene msr(A), and the new MLSB resistance gene erm(48) and could be transformed into Staphylococcus aureus by electroporation. Functionality of erm(48) was demonstrated by cloning and expression in S. aureus.


Sign in / Sign up

Export Citation Format

Share Document