scholarly journals Establishing sustainable roadside vegetation communities of high botanical and aesthetic value: the basic concept statement and experimental justification

Author(s):  
I. P. Voznyachuk ◽  
N. B. Vlasava ◽  
I. M. Stepanovich ◽  
A. T. Godneva ◽  
V. N. Reshetnikov

The basic principles for the development of a new greening system for the region of Belarus aimed at creation and restoration of sustainable roadside plant communities of high botanical and aesthetic value are formulated on the basis of the use of conservation, restoration and “incorporation” methods of flowering native plant species, characteristic of a particular region. The statements of the concept are developed and recommended for roadways and highways in the Republic of Belarus and tested on the model site between the city of Myadel and the resort village of Naroch of Highway P28. Roadside vegetation management practices in other countries as well as our research has shown that along the investigated roads there is a high adaptive potential of native flora; by changing the mowing regime, sustainable plant communities can be established while enhancing the aesthetics and expressiveness of key elements of the landscape of the roadsides. The implementation of the strategy for each geobotanical region depends on the development of an assortment of native plant species that can be used for the greening of roadside areas. This should be done by taking into account their geobotanical and edaphic features, creation of a seed bank for grass mixtures, the formation of natural genetic reserves (field banks) of meadow flora to conserve the local and overall ecosystem and genetic balance. For examples, the atlas of plants “Roadside flowers” developed for the National Park “Narochansky” is recommended for use in roadsides (verges) greening within the boundaries of the Oshmyany– Minsk geobotanical district. To expand the use of gained positive experience on increasing the biodiversity of roadside ecosystems and reducing the cost of their maintenance, it is desirable to implement this strategy for the entire road network of Belarus, which will require adjustment in technologies for managing roadside ecosystems, based on priorities of conservation, restoration and formation of native plant communities, including meadows and wetlands.

Author(s):  
Elizabeth M. Wandrag ◽  
◽  
Jane A. Catford ◽  
◽  
◽  
...  

The introduction of species to new locations leads to novel competitive interactions between resident native and newly-arriving non-native species. The nature of these competitive interactions can influence the suitability of the environment for the survival, reproduction and spread of non-native plant species, and the impact those species have on native plant communities. Indeed, the large literature on competition among plants reflects its importance in shaping the composition of plant communities, including the invasion success of non-native species. While competition and invasion theory have historically developed in parallel, the increasing recognition of the synergism between the two themes has led to new insights into how non-native plant species invade native plant communities, and the impacts they have on those plant communities. This chapter provides an entry point into the aspects of competition theory that can help explain the success, dominance and impacts of invasive species. It focuses on resource competition, which arises wherever the resources necessary for establishment, survival, reproduction and spread are in limited supply. It highlights key hypotheses developed in invasion biology that relate to ideas of competition, outlines biotic and abiotic factors that influence the strength of competition and species' relative competitive abilities, and describes when and how competition between non-native and native plant species can influence invasion outcomes. Understanding the processes that influence the strength of competition between non-native and native plant species is a necessary step towards understanding the causes and consequences of biological invasions.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2208 ◽  
Author(s):  
Thomas K. Lameris ◽  
Joseph R. Bennett ◽  
Louise K. Blight ◽  
Marissa Giesen ◽  
Michael H. Janssen ◽  
...  

We used 116 years of floral and faunal records from Mandarte Island, British Columbia, Canada, to estimate the indirect effects of humans on plant communities via their effects on the population size of a surface-nesting, colonial seabird, the Glaucous-winged gull (Larus glaucescens). Comparing current to historical records revealed 18 extirpations of native plant species (32% of species historically present), 31 exotic species introductions, and one case of exotic introduction followed by extirpation. Contemporary surveys indicated that native species cover declined dramatically from 1986 to 2006, coincident with the extirpation of ‘old-growth’ conifers. Because vegetation change co-occurred with an increasing gull population locally and regionally, we tested several predictions from the hypothesis that the presence and activities of seabirds help to explain those changes. Specifically, we predicted that on Mandarte and nearby islands with gull colonies, we should observe higher nutrient loading and exotic plant species richness and cover than on nearby islands without gull colonies, as a consequence of competitive dominance in species adapted to high soil nitrogen and trampling. As predicted, we found that native plant species cover and richness were lower, and exotic species cover and richness higher, on islands with versus without gull colonies. In addition, we found that soil carbon and nitrogen on islands with nesting gulls were positively related to soil depth and exotic species richness and cover across plots and islands. Our results support earlier suggestions that nesting seabirds can drive rapid change in insular plant communities by increasing nutrients and disturbing vegetation, and that human activities that affect seabird abundance may therefore indirectly affect plant community composition on islands with seabird colonies.


2021 ◽  
Author(s):  
Benjamin Marcus Schlau

Abstract The increasing frequency of wildfires in Southern California’s Mediterranean-type habitats has been facilitating the displacement of native plants by invasive annuals. Black mustard ( Brassica nigra ) is an abundant, allelopathically harmful, invasive forb, which readily colonizes soil niches following most disturbances. Wildfires, however, are unlike other forms of disturbance because they can fundamental alter plant-soil interactions through both physical and chemical changes in the soil. Here, a comparative field study of burned and unburned sites suggests that the Woolsey Fire – the largest wildfire ever recorded in California’s Santa Monica Mountains – inhibited dispersal of B. nigra and changed how it interacts with other plant species in the second year of post-fire recovery. More surprisingly, native plants were more likely to replace B. nigra than non-native plants in burned sites. These results indicate the possibility of post-fire seeding with specific “fire follower” native plant species may allow native flora to occupy soil niche space until longer-lived, competitive native shrubs establish.


2016 ◽  
Author(s):  
Thomas K Lameris ◽  
Joseph R Bennett ◽  
Louise K Blight ◽  
Marissa Giesen ◽  
Michael H Janssen ◽  
...  

We used 116-years of floral and faunal records from Mandarte Island, British Columbia, Canada, to estimate the indirect effects of humans on plant communities via their effects on the population size of a surface-nesting, colonial seabird, the Glaucous-winged gull (Larus glaucescens). Comparing current to historical records revealed 18 extirpations of native plant species (32% of species historically present), 31 exotic species introductions, and one case of exotic introduction followed by extirpation. Contemporary surveys indicated that native species cover declined dramatically from 1986 to 2006, coincident with the extirpation of ‘old-growth’ conifers. Because vegetation change co-occurred with an increasing gull population locally and regionally, we also tested predictions from the hypothesis that the presence and activities of seabirds help to explain those changes. Specifically, we predicted we would observe high nutrient loading and exotic plant species richness and cover on nearby islands with versus without gull colonies as a consequence of competitive dominance in species adapted to high soil nitrogen and trampling. As predicted, we found that native plant species cover and richness were lower, and exotic species cover and richness higher, on islands with versus without gull colonies. In addition, we found that soil carbon and nitrogen on islands with nesting gulls were positively related to soil depth and exotic species richness and cover across plots and islands. Our results suggest that gulls have the potential to drive rapid change in insular plant communities by increasing nutrients and disturbing vegetation. Because human activities have contributed to long-term change in gull populations, our results further suggest compelling, indirect links between human management decisions and plant community composition on islands of the Georgia Basin.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0228476
Author(s):  
Mazher Farid Iqbal ◽  
Ming-Chao Liu ◽  
Aafia Iram ◽  
Yu-Long Feng

Xanthium strumarium is native to North America and now has become one of the invasive alien species (IAS) in China. In order to detect the effects of the invader on biodiversity and evaluate its suitable habitats and ecological distribution, we investigated the abundance, relative abundance, diversity indices, and the number of the invasive and native plants in paired invaded and non-invaded quadrats in four locations in North and Northeast China. We also analyzed the effects of monthly mean maximum and minimum temperatures, relative humidity (%), and precipitations (mm). Strong positive significant (P < 0.01) correlation and maximum interspecific competition (41%) were found in Huailai between invaded and non-invaded quadrats. Shannon’s Diversity Index showed that non-invaded plots had significantly (P < 0.05) more diversified species than invaded ones. The significant (P < 0.05) Margalef’s Richness Index was found in Huailai and Zhangjiakou in non-invaded recorded heterogeneous nature of plant communities. Similarly, significant (P < 0.05) species richness found in Huailai and Zhangjiakou in non-invaded quadrats compared to invaded ones. Maximum evenness of Setaria feberi (0.47, 0.37), Seteria viridis (0.43) found in Fushun and Zhangjiakou recorded more stable in a community compared to other localities. Evenness showed positive relationship of Shannon Entropy within different plant species. The higher dissimilarity in plant communities found in Huailai (87.06%) followed by Yangyuan (44.43%), Zhangjiakou (40.13%) and Fushun (29.02%). The significant (P < 0.01) value of global statistics R (0.943/94.3%) showed high species diversity recorded in Huailai followed by Zhangjiakou recorded by non-metric multidimensional scaling and analysis of similarity between invaded and non-invaded plots. At the end it was concluded that the diversity indices reduced significantly (P < 0.05) in invaded quadrats indicated that native plant species become less diverse due to X. strumarium invasion. The degrees of X. strumarium invasion affected on species richness resulted to reduce diversity indices significantly in invaded quadrats.


Author(s):  
Elizabeth M. Wandrag ◽  
Jane A. Catford

Abstract The introduction of species to new locations leads to novel competitive interactions between resident native and newly-arriving non-native species. The nature of these competitive interactions can influence the suitability of the environment for the survival, reproduction and spread of non-native plant species, and the impact those species have on native plant communities. Indeed, the large literature on competition among plants reflects its importance in shaping the composition of plant communities, including the invasion success of non-native species. While competition and invasion theory have historically developed in parallel, the increasing recognition of the synergism between the two themes has led to new insights into how non-native plant species invade native plant communities, and the impacts they have on those plant communities. This chapter provides an entry point into the aspects of competition theory that can help explain the success, dominance and impacts of invasive species. It focuses on resource competition, which arises wherever the resources necessary for establishment, survival, reproduction and spread are in limited supply. It highlights key hypotheses developed in invasion biology that relate to ideas of competition, outlines biotic and abiotic factors that influence the strength of competition and species' relative competitive abilities, and describes when and how competition between non-native and native plant species can influence invasion outcomes. Understanding the processes that influence the strength of competition between non-native and native plant species is a necessary step towards understanding the causes and consequences of biological invasions.


Soil Research ◽  
2016 ◽  
Vol 54 (3) ◽  
pp. 265 ◽  
Author(s):  
Fang You ◽  
Ram C. Dalal ◽  
Longbin Huang

Root zone soil properties can significantly influence the establishment of revegetated plant communities and alter their development trajectories in mined landscapes, due to closely coupled biogeochemical linkages between soil and plant systems. The present study aimed to characterise physicochemical and biochemical conditions in soil colonised by slow-growing native plant species: Acacia chisholmii (C3, native leguminous shrub) and Triodia pungens (spinifex C4 grass) in Mt Isa, North-west Queensland, Australia. This is to provide the basis for engineering growth media and root zones suitable for supporting target native plant communities to be revegetated in mined landscapes under subtropical and semiarid climatic conditions. Litter chemistry, soil physicochemical properties, and microbial community structure based on phospholipid fatty acids (PLFAs) biomarker method and activities (basal respiration, net mineralisation, dehydrogenase, invertase, urease and neutral phosphatase activities) were characterised in the surface soils beneath the keystone native plant species. Results showed that soils sampled were generally infertile with low levels of total organic carbon (TOC), available nutrients and slow cycling processes with bacteria dominant microbial communities supporting the native plant species. Surface soils underneath acacia and spinifex were modified by in situ litter return, in terms of TOC, and structure and functions of microbial communities. The levels of soil microbial biomass C and N, basal respiration rate and net mineralisation rate in the acacia soil were twice as much as those in the spinifex. Microbial communities in the acacia soil had a greater fungal:bacterial ratio than in the spinifex. On this basis, growth media and root zones for revegetating native acacia-spinifex communities at local mined landscapes may be engineered by using plant organic matter remediation to supply available nutrients and to rehabilitate suitable microbial communities for in situ litter decomposition and nutrient cycling.


2016 ◽  
Author(s):  
Thomas K Lameris ◽  
Joseph R Bennett ◽  
Louise K Blight ◽  
Marissa Giesen ◽  
Michael H Janssen ◽  
...  

We used 116-years of floral and faunal records from Mandarte Island, British Columbia, Canada, to estimate the indirect effects of humans on plant communities via their effects on the population size of a surface-nesting, colonial seabird, the Glaucous-winged gull (Larus glaucescens). Comparing current to historical records revealed 18 extirpations of native plant species (32% of species historically present), 31 exotic species introductions, and one case of exotic introduction followed by extirpation. Contemporary surveys indicated that native species cover declined dramatically from 1986 to 2006, coincident with the extirpation of ‘old-growth’ conifers. Because vegetation change co-occurred with an increasing gull population locally and regionally, we also tested predictions from the hypothesis that the presence and activities of seabirds help to explain those changes. Specifically, we predicted we would observe high nutrient loading and exotic plant species richness and cover on nearby islands with versus without gull colonies as a consequence of competitive dominance in species adapted to high soil nitrogen and trampling. As predicted, we found that native plant species cover and richness were lower, and exotic species cover and richness higher, on islands with versus without gull colonies. In addition, we found that soil carbon and nitrogen on islands with nesting gulls were positively related to soil depth and exotic species richness and cover across plots and islands. Our results suggest that gulls have the potential to drive rapid change in insular plant communities by increasing nutrients and disturbing vegetation. Because human activities have contributed to long-term change in gull populations, our results further suggest compelling, indirect links between human management decisions and plant community composition on islands of the Georgia Basin.


EDIS ◽  
2017 ◽  
Vol 2017 (5) ◽  
Author(s):  
Mary C. Bammer ◽  
Josh Campbell ◽  
Chase B. Kimmel ◽  
James D.. Ellis ◽  
Jaret C. Daniels

The establishment of native wildflower plantings in Florida can benefit agricultural producers as well as native pollinators and other beneficial insects (predators and parasitoids). The plantings do this by:  providing forage and nesting sites for bees, butterflies, and other pollinators, increasing wild bee numbers possibly across the farm, and increasing natural enemies of insect pests (that also depend on forage and nesting sites). This document discusses choosing the right mix of native plant species to benefit many pollinator species, as well as proper site selection, planting practices, and weed control techniques. Wildflower plots should be practical to manage, maximize benefits to wildlife, and fit into the overall management practices of the property. 


Sign in / Sign up

Export Citation Format

Share Document