scholarly journals Biological treatment of coal combustion wastes by Acidithiobacillus thiooxidans DSM 26636

2018 ◽  
Vol 3 (3) ◽  
pp. 54-67 ◽  
Author(s):  
Norma G. Rojas-Avelizapa ◽  
Itzayana V. Hipólito-Júarez ◽  
Marlenne Gómez-Ramírez

The high levels of toxicity generated by the heavy metal content in industrial wastes has generated environmental and health concerns. One of the strategies to reduce the metallic load is the use of sulfur-oxidizing bacteria, due to its ability to produce sulfuric acid involved in the metal leaching. The aim of this research was to evaluate the growth of Acidithioobacillus thiooxidans DSM 26636 and its ability to leach metals from slags and ashes from coal combustion wastes. Microbial growth was monitoring by sulfate and sulfuric acid production. The metal content in slags and fly ashes was determined by ICPOES. The experiments were carried out during 21 days at 30°C, 150 rpm in 125 mL Erlenmeyer flasks containing 30 mL of Starkey media added with 1% (w/v) of elemental sulfur and 1% (w/v) of slags or ashes. Results showed that Acidithioobacillus thiooxidans was able to leach V, Fe, Mg, Al, Si and Ni from slags. For fly ashes, metal leaching was Al, Ni, Sn, Mg, Zn and Si. Summarizing, Acidithioobacillus thiooxidans could be used for the leaching of different metals contained in wastes from carbon combustion plant.

Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1230
Author(s):  
Gómez-Ramírez Marlenne ◽  
Moreno-Villanueva Fernanda ◽  
Rojas-Avelizapa Norma G

Metallic wastes from the metal-mechanic industry represent a serious environmental problem. The possible strategies to reduce the metal content of these industrial wastes is their biotreatment by means of sulfur-oxidizing bacteria, such as Acidithioobacillus thiooxidans DSM 26636, which has been reported as an excellent metal-leaching microorganism by its capability to oxide sublimed sulfur and produce sulfuric acid in the presence of metallic burrs, and leach metals. The metallic composition of burrs was determined by ICP-OES before and after its exposure to biological treatment. The bioleaching process was kept for 21 days at 30 °C at an orbital shaking of 150 rev/min by using Erlenmeyer flasks of 125 mL containing 30 mL of Starkey-modified media added with 0.33 g (1% w/v) of sublimed sulfur and 0.33 g (1% w/v) of metal burrs, and 3 mL of inoculum at logarithmic phase. Results showed that A. thiooxidans was able to grow at these conditions with a maximum sulfate production of 11,028 mg/L, sulfuric acid corresponded to 0.16 M, but no statistical difference was observed for days 14 and 21. A reduction in pH was observed from 2.5 to 1.3 units. Metal bioleaching in mg/kg corresponded Fe (4658.5 ± 291), Cr (237 ± 46), Al (185 ± 12), Si (71 ± 10.3), Mo (63 ± 3.6), Mn (46 ± 3.3), V (18 ± 0.94), Mg (22.2 ± 3.7), Ni (15.8 ± 1.5), and Cu (5.7 ± 1.9). Results showed that A. thiooxidans DSM 26636 was able to grow in the presence of metal-containing wastes, and although metal removal was feasible, more studies are needed to enhance metal removal.


Author(s):  
Bartosz Mikoda ◽  
Anna Potysz ◽  
Agnieszka Gruszecka-Kosowska ◽  
Ewa Kmiecik ◽  
Anna Tomczyk

Abstract The enormous amount of spent catalysts generated worldwide may pose a risk to the environment because of their high load of metals, including vanadium. The latter may be mobilized and released to the environment if managed improperly. Moreover, the catalysts could be considered as secondary resources rather than waste. This study aimed at the efficient extraction of vanadium from spent desulfurization catalyst (SDC) from a sulfuric acid production plant. The raw SDC and the post-extraction residues were characterized in terms of their chemical and phase composition. The metal mobility from the materials was examined with both single-step and multi-step extractions. The environmental risk assessment was performed using sequential extraction. The study revealed that both tested methods (citric acid leaching and bioleaching with Acidithiobacillus thiooxidans) enable the extraction of nearly 96% of V from SDC with a simultaneous reduction of metal mobility. However, the bacterial treatment was found more suitable. The leached residue was mostly (> 90%) composed of SiO2, which makes it a potential candidate for application in construction (e.g., concrete mixtures) after additional examinations. The study highlights the need to develop a metal extraction process for SDC in a way that metal-free residue could be a final product.


2014 ◽  
Vol 70 (8) ◽  
pp. 1405-1411 ◽  
Author(s):  
B. Huber ◽  
J. E. Drewes ◽  
K. C. Lin ◽  
R. König ◽  
E. Müller

Biogenic sulfuric acid corrosion (BSA) is a costly problem affecting both sewerage infrastructure and sludge handling facilities such as digesters. The aim of this study was to verify BSA in full-scale digesters by identifying the microorganisms involved in the concrete corrosion process, that is, sulfate-reducing (SRB) and sulfur-oxidizing bacteria (SOB). To investigate the SRB and SOB communities, digester sludge and biofilm samples were collected. SRB diversity within digester sludge was studied by applying polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) targeting the dsrB-gene (dissimilatory sulfite reductase beta subunit). To reveal SOB diversity, cultivation dependent and independent techniques were applied. The SRB diversity studies revealed different uncultured SRB, confirming SRB activity and H2S production. Comparable DGGE profiles were obtained from the different sludges, demonstrating the presence of similar SRB species. By cultivation, three pure SOB strains from the digester headspace were obtained including Acidithiobacillus thiooxidans, Thiomonas intermedia and Thiomonas perometabolis. These organisms were also detected with PCR-DGGE in addition to two new SOB: Thiobacillus thioparus and Paracoccus solventivorans. The SRB and SOB responsible for BSA were identified within five different digesters, demonstrating that BSA is a problem occurring not only in sewer systems but also in sludge digesters. In addition, the presence of different SOB species was successfully associated with the progression of microbial corrosion.


2006 ◽  
Vol 73 (3) ◽  
pp. 971-980 ◽  
Author(s):  
Satoshi Okabe ◽  
Mitsunori Odagiri ◽  
Tsukasa Ito ◽  
Hisashi Satoh

ABSTRACT Microbially induced concrete corrosion (MICC) in sewer systems has been a serious problem for a long time. A better understanding of the succession of microbial community members responsible for the production of sulfuric acid is essential for the efficient control of MICC. In this study, the succession of sulfur-oxidizing bacteria (SOB) in the bacterial community on corroding concrete in a sewer system in situ was investigated over 1 year by culture-independent 16S rRNA gene-based molecular techniques. Results revealed that at least six phylotypes of SOB species were involved in the MICC process, and the predominant SOB species shifted in the following order: Thiothrix sp., Thiobacillus plumbophilus, Thiomonas intermedia, Halothiobacillus neapolitanus, Acidiphilium acidophilum, and Acidithiobacillus thiooxidans. A. thiooxidans, a hyperacidophilic SOB, was the most dominant (accounting for 70% of EUB338-mixed probe-hybridized cells) in the heavily corroded concrete after 1 year. This succession of SOB species could be dependent on the pH of the concrete surface as well as on trophic properties (e.g., autotrophic or mixotrophic) and on the ability of the SOB to utilize different sulfur compounds (e.g., H2S, S0, and S2O3 2−). In addition, diverse heterotrophic bacterial species (e.g., halo-tolerant, neutrophilic, and acidophilic bacteria) were associated with these SOB. The microbial succession of these microorganisms was involved in the colonization of the concrete and the production of sulfuric acid. Furthermore, the vertical distribution of microbial community members revealed that A. thiooxidans was the most dominant throughout the heavily corroded concrete (gypsum) layer and that A. thiooxidans was most abundant at the highest surface (1.5-mm) layer and decreased logarithmically with depth because of oxygen and H2S transport limitations. This suggested that the production of sulfuric acid by A. thiooxidans occurred mainly on the concrete surface and the sulfuric acid produced penetrated through the corroded concrete layer and reacted with the sound concrete below.


2007 ◽  
Vol 20-21 ◽  
pp. 107-110 ◽  
Author(s):  
Orquidea Coto ◽  
Federico Galizia ◽  
Ernesto González ◽  
Ianeya Hernández ◽  
Jeannette Marrero ◽  
...  

Cuban serpentines are known as one of the richest deposits of Ni and Co in the world. These ores are usually treated by pyrometallurgy or by hydrometallurgy. These processes generate huge volumes of mining residues, which still contains high amounts of Ni (0.25 %) and Co (0.09 %). Since metals are partially oxidized, the chances to use sulfur-oxidizing bacteria (Acidithiobacillus thiooxidans) which are able to generate sulfuric acid to leach the residues from Caron process have been evaluated. Thus, in this work, inorganic and organic acids produced in cultures with A. niger or A. thiooxidans respectively were used to study the extraction of Co and Ni from laterite tailings. The results were compared with those obtained in leaching experiments with direct inoculation of those microorganisms. 7 and 16 % of Ni and Co were leached after 3 days using A. niger and sucrose as carbon source. In stage batch one using A. thiooxidans and elemental sulfur as energy source higher percentages of metal solubilization were reached after 15 days. In stage batch two experiments were carried out using inorganic and/or organic bioacids. Metal recoveries in stage batch two using sulfuric bioacid were higher (79 % Ni and 58 % Co) than those obtained with citric bioacid (2.4 % Ni, and 38% Co). However metal recoveries using chemical leaching with citric acid were much higher (80.4 % Ni and 50 % Co using 0.5 M citric acid). Since the mineralogy composition of raw material is a parameter very important to select the leaching agent of oxide ore, the leaching of residue nickel-ferrous of the Caron process with bio-sulfuric acid produced in A. thiooxidans cultures could be an attractive alternative in the development of a sustainable technology in Cuban mining-metallurgy industry.


Chemistry ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 1166-1177
Author(s):  
Georgios Fytianos ◽  
Dimitra Banti ◽  
Esmeralda Dushku ◽  
Efthimios Papastergiadis ◽  
Minas Yiangou ◽  
...  

Concrete sewer pipes can be corroded by the biogenic sulfuric acid (H2SO4) generated from microbiological activities in a process called biocorrosion or microbiologically induced corrosion (MIC). In this study, inhibitors that can reduce Acidithiobacillus thiooxidans growth and thus may reduce the accumulation of biofilm components responsible for the biodegradation of concrete were used. D-tyrosine, tetrakis hydroxymethyl phosphonium sulfate (THPS) and TiO2 nanoparticles were investigated as potential inhibitors of sulfur-oxidizing bacteria (SOB) growth. Results showed that most of the chemicals used can inhibit SOB growth at a concentration lower than 100 mg/L. TiO2 nanoparticles exhibited the highest biocide effect and potential biocorrosion mitigation activity, followed by D-tyrosine and THPS.


2018 ◽  
Vol 761 ◽  
pp. 73-78 ◽  
Author(s):  
Matej Špak ◽  
Pavel Raschman

Alkali-activated materials based on fly ash are widely developed and also produced on the present. Some of fly ashes are not suitable for production of alkali-activated materials because of their inconvenient chemical composition. Alumina-silicates are the most important components that are needed to accomplish the successful reaction. The proper content of amorphous phase of alumina-silicates and its proportion as well should be provided for the final composition of alkali-activated materials. The influence of pure aluminum oxide powder as well as raw milled natural perlite on mechanical properties and durability of alkali-activated mortars was investigated. These minerals were used as partial replacement of fly ash coming from black coal combustion. In addition, the mortars were prepared by using different alkali activators.


2020 ◽  
Author(s):  
Evgeny Nikolaevich Selivanov ◽  
Dmitry Olegovich Novikov ◽  
Vyacheslav Vasi- Lyevich Belyaev ◽  
Gennady Veniaminovich Skopov

Due to the deterioration of the quality of obtained sulfide-copper concentrates, arsenic circulates and accumulates in the intermediate products, which reduces the quality of the metal and associated product – sulfuric acid. A method of estimation the distribution of impurity elements can be created using the recycling of sulfide concentrates by various technologies (including autogenous smelting, matte conversion and flotation of slags). This technique is based on solving balance equations for iron, copper and arsenic with known compositions of the resulting products. The obtained data were used to assess of the extraction of arsenic into produce outputs (slag, matte, dust, etc.). In this study, the concentration of arsenic in the dust of metallurgical processes and sludge for cleaning acid solutions is confirmed. The increased temperature in the electrostatic precipitator of gas purification of autogenous processes lead to a partial transition of arsenic into the gas stream directed to the sulfuric acid production. It is possible to regulate the fraction of transition of arsenic to dust and sulfuric acid while changing the operating temperature in the electrostatic precipitator. To a lesser extent arsenic is concentrated in the tails of flotation of slag (11.7%) and metallic copper (2.9%). These data are useful for substantiating measures for the wastes recycling and improvement of the ecological environment in the enterprise operating districts. Keywords: arsenic, autogenous melting, matte conversion, slag flotation, purified gas treatment, distribution, dust, sludge


Sign in / Sign up

Export Citation Format

Share Document