scholarly journals Primary Hippocampal Cell Culture and Its Application in Medical Researches

2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Nur Atik ◽  
Alfya Nandika ◽  
Erda Avriyanti ◽  
Tryando Bhatara ◽  
Raden Angga Kartiwa

Studies in neuroscience can be performed in vitro and in vivo. In vivo studies will show significant results, but it is difficult to do and time-consuming. Primary hippocampal cell culture widely has used in neurobiological studies such as identifying the cellular mechanism of proteins, neuronal activity, and characteristics. The results of studies conducted on this cell culture will be very useful in discovering pathogenesis of a disease, the effect of a substance on the neuron, and neural basis of memory and learning. However, currently in Indonesia, primary hippocampal cell culture is still rare and difficult to do. The purpose of this study was to demonstrate that primary hippocampal cell culture can be done and developed in Indonesia and to review the application of it in medical researches. The study was an experimental study by obtaining neurons from animal’s hippocampus was conducted in 2015–2018 at Department of Cell Biology, Graduate School of Medicine Osaka University and Faculty of Medicine Universitas Padjadjaran. The experimental animal was mice embryo gathered 17.5-days postcoitus. Enzymatic and mechanical methods collected primary hippocampal cells. The cells counted and cultured, which later were observed to see neuron differentiation. The average number of culture cells from 3 embryonic’s hippocampus were 2.39×106. Neuron differentiation observed on the first day and more visible and numerous on the third day after plating. In conclusion, primary hippocampal cell culture using hippocampus from one hemisphere of embryonic mice brain showed a sufficient number of cells to carry out research and showed neuron differentiation. KULTUR SEL PRIMER HIPOKAMPUS DAN PENGGUNAANNYA DALAM RISET KEDOKTERANPenelitian dalam neurobiologi dapat dilakukan secara in vitro dan in vivo. Penelitian secara in vivo sangat berdampak hasilnya, namun sulit dan memakan waktu yang lama. Kultur sel primer hipokampus banyak digunakan dalam penelitian neurobiologi seperti melihat mekanisme protein seluler, serta aktivitas dan karakteristik neuron. Hasil penelitian yang dilakukan pada kultur sel ini akan sangat bermanfaat dalam menemukan proses suatu penyakit, efek suatu zat terhadap sel saraf, dan kemampuan belajar serta memori. Akan tetapi, saat ini di Indonesia kultur sel primer hipokampus masih jarang dan sulit dilakukan. Tujuan penelitian ini adalah menunjukkan bahwa kultur sel hipokampus primer dapat dilakukan dan dikembangkan di Indonesia, serta meninjau penerapannya dalam riset kedokteran. Penelitian ini merupakan studi eksperimental dengan mengoleksi neuron dari hipokampus hewan coba yang dilakukan pada tahun 2015–2018 di Department of Cell Biology, Graduate School of Medicine Osaka University dan Fakultas Kedokteran Universitas Padjadjaran. Hewan coba berupa embrio mencit hari ke-17,5 pascakoitus. Sel primer hipokampus dikoleksi untuk dihitung dan dikultur menggunakan metode enzimatik dan mekanik. Observasi neuron pada kultur dilanjutkan dengan mengamati diferensiasi neuron. Rerata jumlah sel kultur dari 3 hipokampus adalah 2,39×106. Diferensiasi neuron sudah tampak pada hari pertama dan makin jelas serta tampak pada hari ketiga pascapenanaman. Simpulan, kultur sel primer hipokampus menggunakan hipokampus dari salah satu sisi hemisfer otak menunjukkan jumlah sel yang cukup untuk melakukan suatu penelitian dan menunjukkan diferensiasi dari neuron.

2020 ◽  
Vol 25 (3) ◽  
pp. 234-246
Author(s):  
Charles McRae White ◽  
Mark A. Haidekker ◽  
William S. Kisaalita

New insights into the biomechanical properties of cells are revealing the importance of these properties and how they relate to underlying molecular, architectural, and behavioral changes associated with cell state and disease processes. However, the current understanding of how these in vitro biomechanical properties are associated with in vivo processes has been developed based on the traditional monolayer (two-dimensional [2D]) cell culture, which traditionally has not translated well to the three-dimensional (3D) cell culture and in vivo function. Many gold standard methods and tools used to observe the biomechanical properties of 2D cell cultures cannot be used with 3D cell cultures. Fluorescent molecules can respond to external factors almost instantaneously and require relatively low-cost instrumentation. In this review, we provide the background on fluorescent molecular rotors, which are attractive tools due to the relationship of their emission quantum yield with environmental microviscosity. We make the case for their use in both 2D and 3D cell cultures and speculate on their fundamental and practical applications in cell biology.


Author(s):  
Yong X. Chen ◽  
Shihao Yang ◽  
Jiahan Yan ◽  
Ming-Han Hsieh ◽  
Lingyan Weng ◽  
...  

Current cell-culture is largely performed on synthetic two-dimensional (2D) petri dishes or permeable supports such as Boyden chambers, mostly because of their ease of use and established protocols. It is generally accepted that modern cell biology research requires new physiologically relevant three-dimensional (3D) cell culture platform to mimic in vivo cell responses. To that end, we report the design and development of a suspended hydrogel membrane (ShyM) platform using gelatin methacrylate (GelMA) hydrogel. ShyM thickness (0.25–1 mm) and mechanical properties (10–70 kPa) can be varied by controlling the size of the supporting grid and concentration of GelMA prepolymer, respectively. GelMA ShyMs, with dual media exposure, were found to be compatible with both the cell-seeding and the cell-encapsulation approach as tested using murine 10T1/2 cells and demonstrated higher cellular spreading and proliferation as compared to flat GelMA unsuspended control. The utility of ShyM was also demonstrated using a case-study of invasion of cancer cells. ShyMs, similar to Boyden chambers, are compatible with standard well-plates designs and can be printed using commonly available 3D printers. In the future, ShyM can be potentially extended to variety of photosensitive hydrogels and cell types, to develop new in vitro assays to investigate complex cell–cell and cell–extracellular matrix (ECM) interactions.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Laurence Finot ◽  
Eric Chanat ◽  
Frederic Dessauge

AbstractIn vivo study of tissue or organ biology in mammals is very complex and progress is slowed by poor accessibility of samples and ethical concerns. Fortunately, however, advances in stem cell identification and culture have made it possible to derive in vitro 3D “tissues” called organoids, these three-dimensional structures partly or fully mimicking the in vivo functioning of organs. The mammary gland produces milk, the source of nutrition for newborn mammals. Milk is synthesized and secreted by the differentiated polarized mammary epithelial cells of the gland. Reconstructing in vitro a mammary-like structure mimicking the functional tissue represents a major challenge in mammary gland biology, especially for farm animals for which specific agronomic questions arise. This would greatly facilitate the study of mammary gland development, milk secretion processes and pathological effects of viral or bacterial infections at the cellular level, all with the objective of improving milk production at the animal level. With this aim, various 3D cell culture models have been developed such as mammospheres and, more recently, efforts to develop organoids in vitro have been considerable. Researchers are now starting to draw inspiration from other fields, such as bioengineering, to generate organoids that would be more physiologically relevant. In this chapter, we will discuss 3D cell culture systems as organoids and their relevance for agronomic research.


2020 ◽  
Vol 45 (5) ◽  
pp. 631-637
Author(s):  
Cansu Ozel-Tasci ◽  
Gozde Pilatin ◽  
Ozgur Edeer ◽  
Sukru Gulec

AbstractBackgroundFunctional foods can help prevent metabolic diseases, and it is essential to evaluate functional characteristics of foods through in vitro and in vivo experimental approaches.ObjectiveWe aimed to use the bicameral cell culture system combined with the in vitro digestion to evaluate glucose bioavailability.Materials and methodsCake, almond paste, and pudding were modified by adding fiber and replacing sugar with sweeteners and polyols. Digestion process was modeled in test tubes. Rat enterocyte cells (IEC-6) were grown in a bicameral cell culture system to mimic the physiological characteristics of the human intestine. The glucose bioaccessibility and cellular glucose efflux were measured by glucose oxidase assay.Results and discussionThe glucose bioaccessibilities of modified foods were significantly lower (cake: 2.6 fold, almond paste: 9.2 fold, pudding 2.8 fold) than the controls. Cellular glucose effluxes also decreased in the modified cake, almond paste, and pudding by 2.2, 4, and 2 fold respectively compared to their controls.ConclusionOur results suggest that combining in vitro enzymatic digestion with cell culture studies can be a practical way to test in vitro glucose bioaccessibility and bioavailability in functional food development.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nathan Jeger-Madiot ◽  
Lousineh Arakelian ◽  
Niclas Setterblad ◽  
Patrick Bruneval ◽  
Mauricio Hoyos ◽  
...  

AbstractIn recent years, 3D cell culture models such as spheroid or organoid technologies have known important developments. Many studies have shown that 3D cultures exhibit better biomimetic properties compared to 2D cultures. These properties are important for in-vitro modeling systems, as well as for in-vivo cell therapies and tissue engineering approaches. A reliable use of 3D cellular models still requires standardized protocols with well-controlled and reproducible parameters. To address this challenge, a robust and scaffold-free approach is proposed, which relies on multi-trap acoustic levitation. This technology is successfully applied to Mesenchymal Stem Cells (MSCs) maintained in acoustic levitation over a 24-h period. During the culture, MSCs spontaneously self-organized from cell sheets to cell spheroids with a characteristic time of about 10 h. Each acoustofluidic chip could contain up to 30 spheroids in acoustic levitation and four chips could be ran in parallel, leading to the production of 120 spheroids per experiment. Various biological characterizations showed that the cells inside the spheroids were viable, maintained the expression of their cell surface markers and had a higher differentiation capacity compared to standard 2D culture conditions. These results open the path to long-time cell culture in acoustic levitation of cell sheets or spheroids for any type of cells.


Parasitology ◽  
2006 ◽  
Vol 133 (3) ◽  
pp. 261-278 ◽  
Author(s):  
A. HEMPHILL ◽  
N. VONLAUFEN ◽  
A. NAGULESWARAN

Neospora caninumis an apicomplexan parasite that is closely related toToxoplasma gondii, the causative agent of toxoplasmosis in humans and domestic animals. However, in contrast toT. gondii, N. caninumrepresents a major cause of abortion in cattle, pointing towards distinct differences in the biology of these two species. There are 3 distinct key features that represent potential targets for prevention of infection or intervention against disease caused byN. caninum. Firstly, tachyzoites are capable of infecting a large variety of host cellsin vitroandin vivo. Secondly, the parasite exploits its ability to respond to alterations in living conditions by converting into another stage (tachyzoite-to-bradyzoite orvice versa). Thirdly, by analogy withT. gondii, this parasite has evolved mechanisms that modulate its host cells according to its own requirements, and these must, especially in the case of the bradyzoite stage, involve mechanisms that ensure long-term survival of not only the parasite but also of the host cell. In order to elucidate the molecular and cellular bases of these important features ofN. caninum, cell culture-based approaches and laboratory animal models are being exploited. In this review, we will summarize the current achievements related to host cell and parasite cell biology, and will discuss potential applications for prevention of infection and/or disease by reviewing corresponding work performed in murine laboratory infection models and in cattle.


Blood ◽  
2012 ◽  
Vol 119 (11) ◽  
pp. 2443-2451 ◽  
Author(s):  
Tatiana Akimova ◽  
Ulf H. Beier ◽  
Yujie Liu ◽  
Liqing Wang ◽  
Wayne W. Hancock

Abstract Clinical and experimental studies show that inhibition of histone/protein deacetylases (HDAC) can have important anti-neoplastic effects through cytotoxic and proapoptotic mechanisms. There are also increasing data from nononcologic settings that HDAC inhibitors (HDACi) can exhibit useful anti-inflammatory effects in vitro and in vivo, unrelated to cytotoxicity or apoptosis. These effects can be cell-, tissue-, or context-dependent and can involve modulation of specific inflammatory signaling pathways as well as epigenetic mechanisms. We review recent advances in the understanding of how HDACi alter immune and inflammatory processes, with a particular focus on the effects of HDACi on T-cell biology, including the activation and functions of conventional T cells and the unique T-cell subset, composed of Foxp3+ T-regulatory cells. Although studies are still needed to tease out details of the various biologic roles of individual HDAC isoforms and their corresponding selective inhibitors, the anti-inflammatory effects of HDACi are already promising and may lead to new therapeutic avenues in transplantation and autoimmune diseases.


2020 ◽  
Vol 295 (30) ◽  
pp. 10293-10306 ◽  
Author(s):  
Qiquan Wang ◽  
Xianling Bian ◽  
Lin Zeng ◽  
Fei Pan ◽  
Lingzhen Liu ◽  
...  

Endolysosomes are key players in cell physiology, including molecular exchange, immunity, and environmental adaptation. They are the molecular targets of some pore-forming aerolysin-like proteins (ALPs) that are widely distributed in animals and plants and are functionally related to bacterial toxin aerolysins. βγ-CAT is a complex of an ALP (BmALP1) and a trefoil factor (BmTFF3) in the firebelly toad (Bombina maxima). It is the first example of a secreted endogenous pore-forming protein that modulates the biochemical properties of endolysosomes by inducing pore formation in these intracellular vesicles. Here, using a large array of biochemical and cell biology methods, we report the identification of BmALP3, a paralog of BmALP1 that lacks membrane pore-forming capacity. We noted that both BmALP3 and BmALP1 contain a conserved cysteine in their C-terminal regions. BmALP3 was readily oxidized to a disulfide bond-linked homodimer, and this homodimer then oxidized BmALP1 via disulfide bond exchange, resulting in the dissociation of βγ-CAT subunits and the elimination of biological activity. Consistent with its behavior in vitro, BmALP3 sensed environmental oxygen tension in vivo, leading to modulation of βγ-CAT activity. Interestingly, we found that this C-terminal cysteine site is well conserved in numerous vertebrate ALPs. These findings uncover the existence of a regulatory ALP (BmALP3) that modulates the activity of an active ALP (BmALP1) in a redox-dependent manner, a property that differs from those of bacterial toxin aerolysins.


2015 ◽  
Vol 60 (3) ◽  
pp. 1226-1233 ◽  
Author(s):  
Petros Ioannou ◽  
Aggeliki Andrianaki ◽  
Tonia Akoumianaki ◽  
Irene Kyrmizi ◽  
Nathaniel Albert ◽  
...  

The modestin vitroactivity of echinocandins againstAspergillusimplies that host-related factors augment the action of these antifungal agentsin vivo. We found that, in contrast to the other antifungal agents (voriconazole, amphotericin B) tested, caspofungin exhibited a profound increase in activity against variousAspergillusspecies under conditions of cell culture growth, as evidenced by a ≥4-fold decrease in minimum effective concentrations (MECs) (P= 0. 0005). Importantly, the enhanced activity of caspofungin againstAspergillusspp. under cell culture conditions was strictly dependent on serum albumin and was not observed with the other two echinocandins, micafungin and anidulafungin. Of interest, fluorescently labeled albumin bound preferentially on the surface of germinatingAspergillushyphae, and this interaction was further enhanced upon treatment with caspofungin. In addition, supplementation of cell culture medium with albumin resulted in a significant, 5-fold increase in association of fluorescently labeled caspofungin withAspergillushyphae (P< 0.0001). Collectively, we found a novel synergistic interaction between albumin and caspofungin, with albumin acting as a potential carrier molecule to facilitate antifungal drug delivery toAspergillushyphae.


1993 ◽  
Vol 121 (3) ◽  
pp. 513-519 ◽  
Author(s):  
W Jiang ◽  
J Lechner ◽  
J Carbon

We have cloned and determined the nucleotide sequence of the gene (CBF2) specifying the large (110 kD) subunit of the 240-kD multisubunit yeast centromere binding factor CBF3, which binds selectively in vitro to yeast centromere DNA and contains a minus end-directed microtubule motor activity. The deduced amino acid sequence of CBF2p shows no sequence homologies with known molecular motors, although a consensus nucleotide binding site is present. The CBF2 gene is essential for viability of yeast and is identical to NDC10, in which a conditional mutation leads to a defect in chromosome segregation (Goh, P.-Y., and J. V. Kilmartin, in this issue of The Journal of Cell Biology). The combined in vitro and in vivo evidence indicate that CBF2p is a key component of the budding yeast kinetochore.


Sign in / Sign up

Export Citation Format

Share Document