scholarly journals ANALISIS KUMULATIF COVID-19 PROVINSI PAPUA TAHUN 2020 MENGGUNAKAN MODEL DISTRIBUSI JOHNSON SB

Author(s):  
Felix Reba ◽  
Alvian Sroyer

Coronavirus belongs to the coronaviridae family. The coronavirus family groups are alpha (α), beta (β), gamma (γ) and delta (δ) coronavirus. Although research related to covid-19 in several provinces in Indonesia has been conducted by several researchers so far there has been no research related to the Covid-19 model in Papua province. One of the obstacles faced by some researchers is related to the Covid-19 data parameters which are difficult to estimate, so that the model formulated could not describe the outbreak well. Therefore the aim of this study is to conduct a cumulative analysis of the 2020 Papua province Covid-19 using the Johnson SB distribution model. The methods used to perform the analysis are Kolmogorov Smirnov for testing the suitability of the Covid-19 data to the model, Johnson SB to show the data distribution model, Maximum Likelihood to estimate the parameters and the Johnson SB cumulative distribution function to describe the probability of Covid-19 data. 19 Papua Province in 2020. The secondary data on the number of Covid-19 cases in Papua, obtained from the Papua Provincial Health Office is used in this research. The results showed that, the highest increase in the number of patients every day, starting from September 1 2020 to October 31, 2020 for infected cases was on 16-17 September, by 274 patients. Meanwhile, most recovery (308 patients) happened to be on 30-31 October and the highest death (5 people) was on 27-28 September. The highest cumulative probability for cases of infection, recovery and death were (Confirmed <4965) = 0.3, Prob(Cured <6408) = 0.9 and Prob(died <91) = 0.4 respectively.

2016 ◽  
Vol 61 (3) ◽  
pp. 489-496
Author(s):  
Aleksander Cianciara

Abstract The paper presents the results of research aimed at verifying the hypothesis that the Weibull distribution is an appropriate statistical distribution model of microseismicity emission characteristics, namely: energy of phenomena and inter-event time. It is understood that the emission under consideration is induced by the natural rock mass fracturing. Because the recorded emission contain noise, therefore, it is subjected to an appropriate filtering. The study has been conducted using the method of statistical verification of null hypothesis that the Weibull distribution fits the empirical cumulative distribution function. As the model describing the cumulative distribution function is given in an analytical form, its verification may be performed using the Kolmogorov-Smirnov goodness-of-fit test. Interpretations by means of probabilistic methods require specifying the correct model describing the statistical distribution of data. Because in these methods measurement data are not used directly, but their statistical distributions, e.g., in the method based on the hazard analysis, or in that that uses maximum value statistics.


2002 ◽  
Vol 18 (4) ◽  
pp. 823-852 ◽  
Author(s):  
G. Forchini

Often neither the exact density nor the exact cumulative distribution function (c.d.f.) of a statistic of interest is available in the statistics and econometrics literature (e.g., the maximum likelihood estimator of the autocorrelation coefficient in a simple Gaussian AR(1) model with zero start-up value). In other cases the exact c.d.f. of a statistic of interest is very complicated despite the statistic being “simple” (e.g., the circular serial correlation coefficient, or a quadratic form of a vector uniformly distributed over the unit n-sphere). The first part of the paper tries to explain why this is the case by studying the analytic properties of the c.d.f. of a statistic under very general assumptions. Differential geometric considerations show that there can be points where the c.d.f. of a given statistic is not analytic, and such points do not depend on the parameters of the model but only on the properties of the statistic itself. The second part of the paper derives the exact c.d.f. of a ratio of quadratic forms in normal variables, and for the first time a closed form solution is found. These results are then specialized to the maximum likelihood estimator of the autoregressive parameter in a Gaussian AR(1) model with zero start-up value, which is shown to have precisely those properties highlighted in the first part of the paper.


2021 ◽  

<p>Weibull Cumulative Distribution Function (C.D.F.) has been employed to assess and compare wind potentials of two wind stations Europlatform and Stavenisse of The Netherland. Weibull distribution has been used for accurate estimation of wind energy potential for a long time. The Weibull distribution with two parameters is suitable for modeling wind data if wind distribution is unimodal. Whereas wind distribution is generally unimodal, random weather changes can make the distribution bimodal. It is always desirable to find a method that accurately represents actual statistical data. Some well-known statistical methods are Method of Moment (MoM), Linear Least Square Method (LLSM), Maximum Likelihood Method (M.L.M.), Modified Maximum Likelihood Method (MMLM), Energy Pattern Factor Method (EPFM), and Empirical Method (E.M.), etc. All these methods employ Probability Density Function (PDF) of Weibull distribution, except LLSM, which uses Cumulative Distribution Function (C.D.F.). In this communication, we are presenting a newly proposed method of evaluating Weibull parameters. Unlike most methods, this new method employs a cumulative distribution function. A MATLAB® GUI-based simulation is developed to estimate Weibull parameters using the C.D.F. approach. It is found that the Mean Square Error (M.S.E.) is the lowest when using the new method. The new method, therefore, estimates wind power density with reasonable accuracy. Wind Power (W.P.) is estimated by considering four different Wind Turbine (W.T.) models for two sites, and maximum W.P. is found using Evance R9000.</p>


Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 899 ◽  
Author(s):  
Yolanda M. Gómez ◽  
Emilio Gómez-Déniz ◽  
Osvaldo Venegas ◽  
Diego I. Gallardo ◽  
Héctor W. Gómez

In this article, we study an extension of the sinh Cauchy model in order to obtain asymmetric bimodality. The behavior of the distribution may be either unimodal or bimodal. We calculate its cumulative distribution function and use it to carry out quantile regression. We calculate the maximum likelihood estimators and carry out a simulation study. Two applications are analyzed based on real data to illustrate the flexibility of the distribution for modeling unimodal and bimodal data.


2016 ◽  
Vol 35 (4) ◽  
Author(s):  
Maurizio Brizzi

A new continuous distribution model is introduced, joining triangular and exponential features, respectively on the left and right side of a hinge point. The cumulative distribution function is derived, as well as the first three moments. Expected values and the Pearson index of skewness are tabulated. A possible step-by-step approach to parameter estimation is outlined. An application to Italian geographical data is given, referring to a set of municipalities classified by population, showing a very satisfactory goodness of fit.


2020 ◽  
Vol 4 (1) ◽  
pp. 22-38
Author(s):  
Akinlolu Olosunde ◽  
Tosin Adekoya

In this paper an exponentiated generalised Gompertz-Makeham distribution. An exponentiated generalised family was introduced by Codeiro, et. al., which allows greater flexibility in the analysis of data. Some Mathematical and Statistical properties including cumulative distribution function, hazard function and survival function of the distribution are derived. The estimation of model parameters are derived via the maximum likelihood estimate method.


Author(s):  
RONALD R. YAGER

We look at the issue of obtaining a variance like measure associated with probability distributions over ordinal sets. We call these dissonance measures. We specify some general properties desired in these dissonance measures. The centrality of the cumulative distribution function in formulating the concept of dissonance is pointed out. We introduce some specific examples of measures of dissonance.


Sign in / Sign up

Export Citation Format

Share Document