scholarly journals Identification of the groundwater existence by geoelectrical method

2020 ◽  
Vol 4 (2) ◽  
pp. 36-42
Author(s):  
I Ketut Sukarasa ◽  
Ida Bagus Alit Paramarta

Research has been carried out to identify the presence of subsurface water in Selulung Village, Kintamani District, Bangli Regency using 2D geoelectric methods. The work process of this research is the first to collect data directly by using a geoelectric device with Wenner configuration. Electric currents are injected from the surface to the subsurface through the current electrodes which are put on the earth's surface. The collected data is then processed using the Res2Din software version 3.71.118. The software results in the form of 2D images are direct lateral images of subsurface structures. From the three trajectories identified, namely at the coordinates  8°12'18.7"S 115°16'08.3"E the lowest resistivity value was 178 Ohm m with a depth of 10 m which was thought to be a rock layer with surface water content. On line 2 at coordinates 8°12'16.1"S 115°16'09.7"E the resistivity value is 6 ohm.m up to 660,000 ohm.m, the maximum depth obtained is 24 m. This line is thought to be a water-bearing layer because the value of resistance is low. Line 3 which is in the coordinates 8°12'16.3"S 115°15'50.0"E the distribution of resistivity values varies from 42 - 9,400 Ohm m.

Geophysics ◽  
2016 ◽  
Vol 81 (4) ◽  
pp. WB97-WB107 ◽  
Author(s):  
Samuel Falzone ◽  
Kristina Keating

Surface nuclear magnetic resonance (surface NMR) is a geophysical method that directly detects water and can be used to determine the depth profile of water content within the subsurface. Although surface NMR has proven useful for investigating groundwater in the saturated zone, its use to study the vadose zone is still in development. A recent study for the South Avra Valley Storage and Recovery Project (SAVSARP) demonstrated that surface NMR can be used to monitor infiltrating water associated with aquifer storage and recovery, a water resource management method in which surface water is stored in local aquifers during wet periods for use during dry periods. However, one of the major issues associated with using surface NMR to monitor infiltrating water is the influence of large bodies of surface water. We have examined the effect that large bodies of surface water have on the surface NMR signal, and we have developed three algorithms (the a priori, late-signal, and long-signal-inversion [LSI] algorithms) to remove this signal. Using synthetic data sets, we have assessed the efficacy of each algorithm and determined that, although each algorithm is capable of suppressing the signal from a water layer with a thickness [Formula: see text], the LSI algorithm provides the most accurate and consistent results. Using a field example from the SAVSARP survey, we have evaluated the use of the LSI algorithm to suppress the surface water signal. Our results have indicated that the signal from surface water detected in a surface NMR survey can be suppressed to obtain the subsurface water content without the use of new measurement techniques or additional equipment.


10.3383/1.1.8 ◽  
2008 ◽  
Vol 1 (1) ◽  
pp. 109-123 ◽  
Author(s):  
G. LEUCCI ◽  
R. CATALDO ◽  
G. DE NUNZIO

Holzforschung ◽  
2008 ◽  
Vol 62 (4) ◽  
Author(s):  
Torbjörn A. Lestander

Abstract Samples of wood pellets were adjusted into six water content classes from 0% to 12%. The water content in single pellets varied between 0.1% and 14.2%. Three equations were constructed to estimate the differential heat of sorption (-ΔH) values from (1) fractal-geometry, (2) isosteric, and (3) calorimetric data. The ranges in calculated -ΔH of single pellets were (1) 133–1475, (2) 315–881, and (3) 195–1188 J g-1 water, respectively, across the studied moisture content range. Partial least squares regression was used to model near-infrared (NIR) spectra from single pellets and to predict -ΔH values and water content. The explained variation in test sets for the different models ranged from 97.1% to 99.9%. The shifts in peak absorbance for two water bands indicated that frequency in overtone vibration of O-H stretching and bending decreased, when water content was raised. Simulations of mixes between pellets of differential heat values showed that released heat was up to 0.03% of the gross calorific value of wood pellets. This heat may be a major contributor to initial temperature increases in pellet stacks during storage. The results indicate that on-line NIR based predictions of differential heat in wood pellets is possible to apply in the pellet industry.


2013 ◽  
Vol 68 (12) ◽  
pp. 2632-2637 ◽  
Author(s):  
A. M. Aucour ◽  
T. Bariac ◽  
P. Breil ◽  
P. Namour ◽  
L. Schmitt ◽  
...  

Urbanization subjects streams to increased nitrogen loads. Therefore studying nitrogen forms at the interface between urban stream and groundwater is important for water resource management. In this study we report results on water δ18O and nitrogen forms in subsurface waters of a stream (Yzeron, France). The sites studied were located upstream and downstream of combined sewer overflows (CSO) in a rural area and a periurban area, respectively. Water δ18O allowed us to follow the mixing of subsurface water with surface water. Dissolved organic nitrogen and organic carbon of fine sediment increased by 20–30% between rural and periurban subsurface waters in the cold season, under high flow. The highest nitrate levels were observed in rural subsurface waters in the cold season. The lowest nitrate levels were found in periurban subsurface waters in the warm season, under low flow. They corresponded to slow exchange of subsurface waters with channel water. Thus reduced exchange between surface and subsurface waters and organic-matter-rich input seemed to favor nitrate reduction in the downstream, periurban, subsurface waters impacted by CSO.


2012 ◽  
Vol 16 (3) ◽  
pp. 649-669 ◽  
Author(s):  
G. H. de Rooij

Abstract. The increasing importance of catchment-scale and basin-scale models of the hydrological cycle makes it desirable to have a simple, yet physically realistic model for lateral subsurface water flow. As a first building block towards such a model, analytical solutions are presented for horizontal groundwater flow to surface waters held at prescribed water levels for aquifers with parallel and radial flow. The solutions are valid for a wide array of initial and boundary conditions and additions or withdrawals of water, and can handle discharge into as well as lateral infiltration from the surface water. Expressions for the average hydraulic head, the flux to or from the surface water, and the aquifer-scale hydraulic conductivity are developed to provide output at the scale of the modelled system rather than just point-scale values. The upscaled conductivity is time-variant. It does not depend on the magnitude of the flux but is determined by medium properties as well as the external forcings that drive the flow. For the systems studied, with lateral travel distances not exceeding 10 m, the circular aquifers respond very differently from the infinite-strip aquifers. The modelled fluxes are sensitive to the magnitude of the storage coefficient. For phreatic aquifers a value of 0.2 is argued to be representative, but considerable variations are likely. The effect of varying distributions over the day of recharge damps out rapidly; a soil water model that can provide accurate daily totals is preferable over a less accurate model hat correctly estimates the timing of recharge peaks.


2011 ◽  
Vol 342 (1-2) ◽  
pp. 459-468 ◽  
Author(s):  
Bernhard Ruth ◽  
Mohamedali Khalvati ◽  
Urs Schmidhalter

2007 ◽  
Vol 67 (1) ◽  
pp. 100-114 ◽  
Author(s):  
Tine L. Rasmussen ◽  
Erik Thomsen ◽  
Marta A. Ślubowska ◽  
Simon Jessen ◽  
Anders Solheim ◽  
...  

AbstractTwo cores from the southwestern shelf and slope of Storfjorden, Svalbard, taken at 389 m and 1485 m water depth have been analyzed for benthic and planktic foraminifera, oxygen isotopes, and ice-rafted debris. The results show that over the last 20,000 yr, Atlantic water has been continuously present on the southwestern Svalbard shelf. However, from 15,000 to 10,000 14C yr BP, comprising the Heinrich event H1 interval, the Bølling–Allerød interstades and the Younger Dryas stade, it flowed as a subsurface water mass below a layer of polar surface water. In the benthic environment, the shift to interglacial conditions occurred at 10,000 14C yr BP. Due to the presence of a thin upper layer of polar water, surface conditions remained cold until ca. 9000 14C yr BP, when the warm Atlantic water finally appeared at the surface. Neither extensive sea ice cover nor large inputs of meltwater stopped the inflow of Atlantic water. Its warm core was merely submerged below the cold polar surface water.


2009 ◽  
Vol 6 (11) ◽  
pp. 2421-2431 ◽  
Author(s):  
M. Chierici ◽  
A. Fransson

Abstract. In the summer of 2005, we sampled surface water and measured pH and total alkalinity (AT) underway aboard IB Oden along the Northwest Passage from Cape Farewell (South Greenland) to the Chukchi Sea. We investigated the variability of carbonate system parameters, focusing particularly on carbonate concentration [CO32−] and calcium carbonate saturation states, as related to freshwater addition, biological processes and physical upwelling. Measurements on AT, pH at 15°C, salinity (S) and sea surface temperature (SST), were used to calculate total dissolved inorganic carbon (CT), [CO32−] and the saturation of aragonite (ΩAr) and calcite (ΩCa) in the surface water. The same parameters were measured in the water column of the Bering Strait. Some surface waters in the Canadian Arctic Archipelago (CAA) and on the Mackenzie shelf (MS) were found to be undersaturated with respect to aragonite (ΩAr<1). In these areas, surface water was low in AT and CT (<1500 μmol kg−1) relative to seawater and showed low [CO32−]. The low saturation states were probably due to the likely the effect of dilution due to freshwater addition by sea ice melt (CAA) and river runoff (MS). High AT and CT and low pH, corresponded with the lowest [CO32−], ΩAr and ΩCa, observed near Cape Bathurst and along the South Chukchi Peninsula. This was linked to the physical upwelling of subsurface water with elevated CO2. The highest surface ΩAr and ΩCa of 3.0 and 4.5, respectively, were found on the Chukchi Sea shelf and in the cold water north of Wrangel Island, which is heavily influenced by high CO2 drawdown and lower CT from intense biological production. In the western Bering Strait, the cold and saline Anadyr Current carries water that is enriched in AT and CT from enhanced organic matter remineralization, resulting in the lowest ΩAr (~1.2) of the area.


Sign in / Sign up

Export Citation Format

Share Document