scholarly journals Cordination Compound of Dimethyltin(IV) with N,N,N’N’-Tetraethylethylenediamine: Speciation and Theoretical approach

2020 ◽  
Vol 64 (2) ◽  
Author(s):  
Safaa Said Hassan ◽  
Mohamed Mohamed Shoukry ◽  
Abdel Aziz Qasem Jbarah

The formation equilibria of the dimethyltin(IV) complexes with of N,N,N’,N’-tetraethylethylenediamine (Et4en) in solution were investigated. The stoichiometry and stability constants of the complexes formed in solution phase were determined at different temperatures (15 oC – 35 oC) and in solutions of dioxane-water mixtures of different compositions (15% - 62.5%). The accepted model is composed of the 110, 111, 11-1 and 11-2 species. The thermodynamic parameters H and S associated with the protonation of N,N,N`,N`-tetraethylethylendiamine (Et4en) and its complex formation with the dimethyltin(IV) species were determined. The complex formation reaction is exothermic. The equilibrium constant for the displacement of N,N,N’,N’-tetraethylethylenediamine coordinated to dimethyltin(IV) by some selected DNA constituents was calculated. The Keq values clearly indicate the ability of DNA to displace the coordinated Et4en from its dimethyltin(IV) complex. The nucleotides IMP and GMP have the highest values. The DFT/B3LYP method was used for geometric optimization of the ligand and the complex using the Gaussian 09 program. Also the vibrational frequencies of the ligands and complexes were computed for the optimized geometries. The results shows that there is no imaginary frequencies as found in the calculated vibrational frequencies. The binding energies of the dimethyltin(IV) complexes were calculated. All calculated binding energy values are negative.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Khémesse Kital ◽  
Moumouny Traoré ◽  
Diégane Sarr ◽  
Moussa Mbaye ◽  
Mame Diabou Gaye Seye ◽  
...  

Abstract The aim of this work is to determine the thermodynamic parameters and the kinetics of complex formation between orthophthalaldehyde (OPA) and agmatine (AGM) in an alkaline medium (pH 13). Firstly, the association constant (Ka) between orthophthalaldehyde and agmatine was determined at different temperatures (between 298 K and 338 K) with a step size of 10 K. Secondly, the thermodynamic parameters such as standard enthalpy (ΔH°), standard entropy (ΔS°),and Gibbs energy (∆G) were calculated, where a positive value of ΔH° (+45.50 kJ/mol) was found, which shows that the reaction is endothermic. In addition, the low value of ΔS°(+0.24 kJ/mol) indicates a slight increase in the disorder in the reaction medium. Furthermore, the negative values of ΔG between −35.62 kJ/mol and −26.02 kJ/mol show that the complex formation process is spontaneous. Finally, the parameters of the kinetics of the reaction between OPA and AGM were determined as follows: when the initial concentration of AGM (5 × 10−6 M) is equal to that of the OPA, the results show that the reaction follows an overall 1.5 order kinetics with an initial rate of 5.1 × 10−7Mmin−1 and a half-life of 8.12 min. The partial order found in relation to the AGM is 0.8. This work shows that the excess of OPA accelerates the formation reaction of the complex.


2020 ◽  
Vol 65 (4) ◽  
pp. 304
Author(s):  
A. Amonov ◽  
G. Murodov ◽  
K. G. Tokhadze ◽  
A. Jumabaev ◽  
G. Nurmurodova

Our research is focused on the ab initio calculations of the equilibrium structures, binding energies, harmonic and anharmonic vibrational frequencies of a hydrogen-bonded complex, which is formed between formaldehyde H2CO and hydrogen fluoride HF, using the Gaussian 09 package of programs with full 6311++G(3df, 3pd) basis sets in the MP2 second-order perturbation theory and CCSD(T) methods. Harmonic and anharmonic vibrational frequencies and intensities of the H2CO···HF complex were calculated by the Gaussian 16 package programs within the same approximation. Geometric changes and frequency shifts at the complex formation were evaluated. The H2CO···HF complex formation energy and the dipole moment were calculated in the CCSD(T)6311++G(3df, 3pd) approximation to be equal, respectively, to 7.78 kcal/mol and 4.2 D. Changes of the geometric, spectral, and energetic parameters of the complex proved the existence of a stable hydrogen bond F–H···O=CH2 between the components.


1977 ◽  
Vol 16 (01) ◽  
pp. 30-35 ◽  
Author(s):  
N. Agha ◽  
R. B. R. Persson

SummaryGelchromatography column scanning has been used to study the fractions of 99mTc-pertechnetate, 99mTcchelate and reduced hydrolyzed 99mTc in preparations of 99mTc-EDTA(Sn) and 99mTc-DTPA(Sn). The labelling yield of 99mTc-EDTA(Sn) chelate was as high as 90—95% when 100 μmol EDTA · H4 and 0.5 (Amol SnCl2 was incubated with 10 ml 99mTceluate for 30—60 min at room temperature. The study of the influence of the pH-value on the fraction of 99mTc-EDTA shows that pH 2.8—2.9 gave the best labelling yield. In a comparative study of the labelling kinetics of 99mTc-EDTA(Sn) and 99mTc- DTPA(Sn) at different temperatures (7, 22 and 37°C), no significant influence on the reduction step was found. The rate constant for complex formation, however, increased more rapidly with increased temperature for 99mTc-DTPA(Sn). At room temperature only a few minutes was required to achieve a high labelling yield with 99mTc-DTPA(Sn) whereas about 60 min was required for 99mTc-EDTA(Sn). Comparative biokinetic studies in rabbits showed that the maximum activity in kidneys is achieved after 12 min with 99mTc-EDTA(Sn) but already after 6 min with 99mTc-DTPA(Sn). The long-term disappearance of 99mTc-DTPA(Sn) from the kidneys is about five times faster than that for 99mTc-EDTA(Sn).


2010 ◽  
Vol 9 (3) ◽  
pp. 199-204
Author(s):  
Ying-Xiang Du ◽  
Zhong-Jun Xu ◽  
Chung-Gin Hsu ◽  
Jiao-Mai Pan

Polyhedron ◽  
1991 ◽  
Vol 10 (1) ◽  
pp. 11-17 ◽  
Author(s):  
R. Ludwig ◽  
S. Fischer ◽  
R. Dreyer ◽  
R. Jacobi ◽  
J. Beger

2003 ◽  
pp. 2698-2703 ◽  
Author(s):  
Ermanno Vasca ◽  
Diego Ferri ◽  
Carla Manfredi ◽  
Loredana Torello ◽  
Cecilia Fontanella ◽  
...  

1993 ◽  
Vol 18 (5) ◽  
pp. 457-461 ◽  
Author(s):  
Predrag Djurdjević ◽  
Ratomir Jelić

Sign in / Sign up

Export Citation Format

Share Document