scholarly journals Influence of Die Temperature on Unit Density and Calorific Value of Municipal Solid Waste Pellets

Author(s):  
S R H Siregar ◽  
D Nursani ◽  
A Surjosatyo
2020 ◽  
Vol 12 (11) ◽  
pp. 4645
Author(s):  
Hamid Rezaei ◽  
Fahimeh Yazdan Panah ◽  
C. Jim Lim ◽  
Shahab Sokhansanj

The combustible fraction of municipal solid waste (MSW) is called refuse-derived fuel (RDF). RDF is a blend of heterogeneous materials and thus its handling is challenging. Pelletization is an efficient treatment to minimize the heterogeneity. In this research, typical RDF compositions were prepared by mixing several mass fractions of paper, plastic, household organic and wood. The collected compositions were ground, wetted to 20% moisture content (wet basis) and pelletized. Increasing the plastic content from 20% to 40% reduced the pelletization energy but increased the pellet’s calorific value. Pellets with higher plastic content generated more dust when exposed to shaking. Making durable pellets with 40% plastic content needed an increase in die temperature from 80 °C to 100 °C. Increasing the paper content from 30% to 50% increased the durability but consumed higher energy to form pellets. Paper particles increased the friction between pellet’s surface and die wall as was evident from expulsion energy. Force versus displacement curve for material compression revealed that the RDF compositions have rigid material characteristics.


2016 ◽  
Vol 99 ◽  
pp. 1253-1261 ◽  
Author(s):  
V.S. Yaliwal ◽  
N.R. Banapurmath ◽  
R.S. Hosmath ◽  
S.V. Khandal ◽  
Wojciech M. Budzianowski

2010 ◽  
Vol 64 (2) ◽  
Author(s):  
Agnieszka Zawadzka ◽  
Liliana Krzystek ◽  
Stanisław Ledakowicz

AbstractTo carry out autothermal drying processes during the composting of biomass, a horizontal tubular reactor was designed and tested. A biodrying tunnel of the total capacity of 240 dm3 was made of plastic material and insulated with polyurethane foam to prevent heat losses. Municipal solid waste and structural plant material were used as the input substrate. As a result of autothermal drying processes, moisture content decreased by 50 % of the initial moisture content of organic waste of about 800 g kg−1. In the tested cycles, high temperatures of biodried waste mass were achieved (54–56°C). An appropriate quantity of air was supplied to maintain a satisfactory level of temperature and moisture removal in the biodried mass and high energy content in the final product. The heat of combustion of dried waste and its calorific value were determined in a calorimeter. Examinations of pyrolysis and gasification of dried waste confirmed their usefulness as biofuel of satisfactory energy content.


2018 ◽  
Vol 37 (6) ◽  
pp. 578-589 ◽  
Author(s):  
Imane Boumanchar ◽  
Younes Chhiti ◽  
Fatima Ezzahrae M’hamdi Alaoui ◽  
Abdelaziz Sahibed-dine ◽  
Fouad Bentiss ◽  
...  

Municipal solid waste (MSW) management presents an important challenge for all countries. In order to exploit them as a source of energy, a knowledge of their calorific value is essential. In fact, it can be experimentally measured by an oxygen bomb calorimeter. This process is, however, expensive. In this light, the purpose of this paper was to develop empirical models for the prediction of MSW higher heating value (HHV) from ultimate analysis. Two methods were used: multiple regression analysis and genetic programming formalism. Both techniques gave good results. Genetic programming, however, provides more accuracy compared to published works in terms of a great correlation coefficient (CC) and a low root mean square error (RMSE).


2021 ◽  
Vol 926 (1) ◽  
pp. 012009
Author(s):  
S A C R Darmawan ◽  
A L Sihombing ◽  
D G Cendrawati

Abstract The government has regulated the use of RDF biomass for coal co-firing in power plants. This paper examines biomass (Eichhornia Crassipes and municipal solid waste) characteristics and its potential use as RDF for co-firing in CPP. The method includes the analysis of the composition, supply of raw materials, and biomass characteristics. These results will compare with the coal’s characteristics in CPP. The density of Eichhornia Crassipes in Lake Tondano was 25 kg/m2, with the wet mass of 45,350 tons. The results of the Eichhornia Crassipes sample test for parameters of moisture content, volatile matter, ash content, fix carbon and gross calorific value have a value range of 93%, 5.8-7.1%, 60.21-63.5%, 17.9-22%, 11.4% and 2681-3068 kcal/kg. Amurang CPP uses coal with 4200 kcal/kg calories as much as 1056 tons/day. The co-firing target of 5% requires 52.8 tons of biomass per day. The existing Eichhornia Crassipes biomass in Lake Tondano only supplies the CPP for 62 days. MSW typically has calorific values and moisture with Eichhornia Crassipes biomass, about 3766-4194 kcal/kg and 31.7-87.1%. The use of MSW to cover the lack of Eichhornia Crassipes will ensure the sustainability of the supply of biomass raw materials in the co-firing program at CPP.


2020 ◽  
Vol 24 (3) ◽  
pp. 112-118
Author(s):  
Dace Âriņa ◽  
Rūta Bendere ◽  
Gintaras Denafas ◽  
Jānis Kalnačs ◽  
Mait Kriipsalu

AbstractThe authors determined the morphological composition of refuse derived fuel (RDF) produced in Latvia and Lithuania by manually sorting. The parameters of RDF (moisture, net calorific value, ash content, carbon, nitrogen, hydrogen, sulphur, chlorine, metals) was determined using the EN standards. Comparing obtained results with data from literature, authors have found that the content of plastic is higher but paper and cardboard is lower than typical values. Results also show that the mean parameters for RDF can be classified with the class codes: Net heating value (3); chlorine (3); mercury (1), and responds to limits stated for 3rd class of solid recovered fuel. It is recommended to separate biological waste at source to lower moisture and ash content and increase heating value for potential fuel production from waste.


1984 ◽  
Vol 106 (3) ◽  
pp. 377-382 ◽  
Author(s):  
M. Igarashi ◽  
Y. Hayafune ◽  
R. Sugamiya ◽  
Y. Nakagawa ◽  
K. Makishima

Funabashi City’s Municipal Solid Waste Pyrolysis Plant is the first full-scale plant having a dual fluidized bed gasification system. The plant has the capacity of processing 4.5 × 105 kg/day of mixed municipal solid waste with a very limited emission of air, water and land pollutants. The energy is recovered as high calorific value fuel gas. Since April 1983, the plant has been in continuous operation. The purpose of this paper is to report on the system and the experience obtained during the 5 mo in which it was in operation. Data on the material balance of the pyrolysis, the analysis regarding the gas produced, the flue gas composition and the equipment used are included.


2018 ◽  
Vol 40 (2) ◽  
pp. 33-40
Author(s):  
O.I. Sigal ◽  
L.I. Vorobiov ◽  
N.Y. Pavliuk ◽  
R.V. Serhiienko

The results of experimental studies of humidity, ash content, calorific value for сomponents of municipal solid waste in Cherkassy city are presented. The results of the research are used to develop an integrated waste management and recycling system in the Cherkassy city.  The waste management strategy has been adopted in Ukraine. It determines the main directions of reforming the system of sanitary cleaning of cities in order to minimize environmental pollution in accordance with EU standards. In the process of preparation of the regional implementation plan for the Strategy in Cherkassy, a study of the morphology, energy and environmental characteristics of the components of solid domestic waste (SDW) was made. This article presents the results of experimental studies of humidity, calorific value and ash content for 8 components of waste: paper, cardboard, composite materials, textiles, hygiene products, plastic, other combustible materials, wood shavings are presented. Humidity is also determined in organic residues and in fine fractions. The investigations were carried out at the experimental stand of the Institute of Technical Thermophysics of the National Academy of Sciences of Ukraine. Due to the absence in Ukraine of standards for the study of energy characteristics of solid waste, the measurements were carried out in accordance with standards for solid organic fuels, which slightly differ from the EU methods for the study of solid waste. In order to develop regional integrated waste management plans within the framework of the strategy implementation, based on the qualitative analysis of MSW components, it is necessary to develop standards for determining the energy characteristics of SDW in line with European normative documents. The study of the energy characteristics of solid waste showed a significant heterogeneity in the components of solid waste, which significantly complicated the determination of characteristics and led to a considerable scatter of results and an increase in measurement uncertainty. This happened due to low weight and the need for thorough homogenization of the sample, which was experimentally investigated in accordance with the method of preparation of an analytical sample. The article analyzes need for adaptation of the European methods of detailed morphology of solid domestic waste in Ukraine, which is necessary for separate waste collection. The results of the research are used to develop an integrated waste management and recycling system in the city of Cherkassy.


Sign in / Sign up

Export Citation Format

Share Document