scholarly journals Three-dimensional inverse design and hydrodynamic performance analysis of contra-rotating axial flow pump

Author(s):  
Xiaoer Wang ◽  
Zhenshan Zhang ◽  
Meng Zhang
2013 ◽  
Vol 52 (3) ◽  
pp. 032011
Author(s):  
W J Wang ◽  
Q H Liang ◽  
Y Wang ◽  
Y Yang ◽  
G Yin ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1493
Author(s):  
Weidong Cao ◽  
Wei Li

The operating range of axial flow pumps is often constrained by the onset of rotating stall. An improved method using a double inlet nozzle to stabilize the performance curve is presented in the current study; a single inlet nozzle and three kinds of double inlet nozzle with different rib gap widths at the inlet of axial flow pump impeller were designed. Three dimensional (3D) incompressible flow fields were simulated, and the distributions of turbulence kinetic energy and velocity at different flow rates located at the inlet section, as well as the pressure and streamline in the impeller, were obtained at the same time. The single inlet nozzle scheme and a double inlet nozzle scheme were studied; the experimental and numerical performance results show that although the cross section is partly blocked in the double inlet nozzle, the head and efficiency do not decline at stable operation flow rate. On small flow rate condition, the double inlet nozzle scheme effectively stabilized the head-flow performance, whereby the block induced by the backflow before the impeller was markedly improved by using a double inlet nozzle. It has also been found that the rib gap width impacts the efficiency curve of the axial flow pump.


1983 ◽  
Vol 105 (3) ◽  
pp. 277-283 ◽  
Author(s):  
M. Murakami ◽  
K. Minemura

Motion of air bubbles in a high-specific-speed axial-flow pump impeller was analyzed on the basis of measured streak lines of air bubbles in the impeller. The results were compared with those obtained by a numerical solution of the bubble motion equations for three dimensional flow. Governing factors of the bubble motion are the drag force due to the surrounding water and the force due to the pressure gradient. Trajectories of the bubbles deviate somewhat from the streamlines of water, and the amount of the deviation is dependent on the bubble diameter and also on specific-speeds of the pumps and flow rate of water.


Author(s):  
Yan Jin ◽  
Junxin Wu ◽  
Hongcheng Chen ◽  
Chao Liu

Diffuser vane of tubular pump is different with that of the axial flow pump, since the diffusion angle after the impeller is larger than as usual, which is an important part of bulb tubular pump system. By calculating the hydraulic loss of each part of bulb tubular pump system, it is found that the hydraulic loss of diffuser vane is in large proportion of the whole hydraulic loss. For this situation, focuses on the design parameters of diffuser vane such as diffuser vane length, unilateral edge diffusion angle, equivalent diffusion angle are necessary. In this paper, CFD method is used to simulate the turbulent flow in a bulb tubular pumping system with two different diffuser vanes. The three dimensional flow fields in the whole passage of pumping system with different diffuser vanes are obtained. The results show that all the main geometry parameters of the diffuser vane design affect the performances of tubular pumping system, it should be chosen the parameters reasonably based on the actual situation.


2008 ◽  
Author(s):  
Friedrich-Karl Benra ◽  
Hans Josef Dohmen

In highly loaded axial flow pumps considerable changes of the flow behavior are known when altering the flow rate from design point operation to part load operation. The flow structure which is changing from stable operating conditions to stalled flow conditions has been investigated experimental by Kosyna and Stark. The measured results are compared to results obtained by numerical simulations in a previous paper of the authors. Time dependent three dimensional flow fields in this axial flow pump have been investigated by unsteady Reynolds averaged Navier-Stokes simulations. The time resolved flow fields are compared to the time averaged results of the measurements for the design point and also for part load operating conditions. The change in the vortex structure induced by the tip leakage flow is investigated in detail for different conditions of operation. Also the part load recirculation vortex dominating the rotor tip flow at deep stall conditions as well as the cross passage vortex is visualized by evaluating the numerical results.


2008 ◽  
Vol 35 (16) ◽  
pp. 1604-1614 ◽  
Author(s):  
Hong Gao ◽  
Wanlai Lin ◽  
Zhaohui Du

Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3053
Author(s):  
Youn-Sung Kim ◽  
Man-Woong Heo ◽  
Hyeon-Seok Shim ◽  
Bong-Soo Lee ◽  
Dong-Hwan Kim ◽  
...  

Submersible pumps are now in high demand due to the sporadic occurrence of recent torrential rains. The current study was carried out to investigate the hydraulic characteristics of a submersible axial-flow pump with a swept impeller and to optimize the impeller and diffuser shapes of the pump to enhance the hydraulic performance. Three-dimensional Reynolds-averaged Navier–Stokes equations were solved with the shear stress transport turbulence model. The governing equations were discretized using the finite volume method, and unstructured tetrahedral and hexahedral meshes were used in the grid system. The optimal grid system was selected through a grid dependency test. A performance test for the submersible axial-flow pump was carried out experimentally, and the results of the numerical analysis were validated against the experimental results. The hydraulic efficiency and the total head were used as objective functions. For the first optimization, a multi-objective optimization was carried out to simultaneously improve the objective functions through a hybrid multi-objective evolutionary algorithm coupled with a response surface approximation by varying the swept angle and pitch angle of the blades of the rotating impeller. The second multi-objective optimization was performed using two design variables, i.e., the inlet angle and the length of the diffuser vanes, to simultaneously increase the objective functions. Clustered optimum designs in the Pareto optimal solutions yielded significant increases in the objective function values as compared with the reference design.


2003 ◽  
Vol 12 (3) ◽  
pp. 231-233 ◽  
Author(s):  
Changming Yang ◽  
Cichang Chen ◽  
Jinnuo Wang ◽  
Quankai Ji

Sign in / Sign up

Export Citation Format

Share Document