scholarly journals The Effect of Polymeric Exercises for Front Speed Kick

Author(s):  
N Ihsan ◽  
Zulman ◽  
S F Utami
Keyword(s):  
2008 ◽  
Vol 616 ◽  
pp. 327-356 ◽  
Author(s):  
BRIAN L. WHITE ◽  
KARL R. HELFRICH

A steady theory is presented for gravity currents propagating with constant speed into a stratified fluid with a general density profile. Solution curves for front speed versus height have an energy-conserving upper bound (the conjugate state) and a lower bound marked by the onset of upstream influence. The conjugate state is the largest-amplitude nonlinear internal wave supported by the ambient stratification, and in the limit of weak stratification approaches Benjamin's energy-conserving gravity current solution. When the front speed becomes critical with respect to linear long waves generated above the current, steady solutions cannot be calculated, implying upstream influence. For non-uniform stratification, the critical long-wave speed exceeds the ambient long-wave speed, and the critical-Froude-number condition appropriate for uniform stratification must be generalized. The theoretical results demonstrate a clear connection between internal waves and gravity currents. The steady theory is also compared with non-hydrostatic numerical solutions of the full lock release initial-value problem. Some solutions resemble classic gravity currents with no upstream disturbance, but others show long internal waves propagating ahead of the gravity current. Wave generation generally occurs when the stratification and current speed are such that the steady gravity current theory fails. Thus the steady theory is consistent with the occurrence of either wave-generating or steady gravity solutions to the dam-break problem. When the available potential energy of the dam is large enough, the numerical simulations approach the energy-conserving conjugate state. Existing laboratory experiments for intrusions and gravity currents produced by full-depth lock exchange flows over a range of stratification profiles show excellent agreement with the conjugate state solutions.


2021 ◽  
Author(s):  
Yining Sun ◽  
Ji Li ◽  
Zhixian Cao ◽  
Alistair G.L. Borthwick

<p>For reservoirs built on a hyper-concentrated river, tributary inflow and sediment input may affect the formation and evolution of reservoir turbidity current, and accordingly bed morphology. However, the understanding of tributary effects on reservoir turbidity currents has remained poor. Here a series of laboratory-scale reservoir turbidity currents are investigated using a coupled 2D double layer-averaged shallow water hydro-sediment-morphodynamic model. It is shown that the tributary location may lead to distinctive effects on reservoir turbidity current. Clear-water flow from the tributary may cause the stable plunge point to migrate upstream, and reduce its front speed. Sediment-laden inflow from the tributary may increase the discharge, sediment concentration, and front speed of the turbidity current, and also cause the plunge point to migrate downstream when the tributary is located upstream of the plunge point. In contrast, if the tributary is located downstream of the plunge point, sediment-laden flow from the tributary causes the stable plunge point to migrate upstream, and while the tributary effects on discharge, sediment concentration, and front speed of the turbidity current are minor. A case study is presented as of the Guxian Reservoir (under planning) on the middle Yellow River, China. The present finding highlights the significance of tributary inflow and sediment input in the formation and propagation of reservoir turbidity current and also riverbed deformation. Appropriate account of tributary effects is warranted for long-term maintenance of reservoir capacity and maximum utilization of the reservoir.</p>


2000 ◽  
Author(s):  
Ryan J. Lowe

Abstract Laboratory experiments were performed in which an intrusive gravity current was observed using shadowgraph and particle tracking methods. The intrusion was generated in a two-layer fluid with a sharp interface by mixing the fluid behind a vertical lock-gate and then suddenly withdrawing the gate from the tank. The purpose of the experiments is to determine the structure of the velocity field inside the intrusion as well as the stability characteristics of the interface. Soon after the removal of the lock-gate the speed of the front of the intrusive gravity current reached a constant speed. The observed structure of the flow inside the intrusion shows a “head region” where the flow is nearly uniform, followed by a region of intense mixing and high velocities and finally followed by another region of fairly uniform velocity with a speed slightly faster than the front speed. The results show that the maximum centerline velocity is about 50% greater than the front speed and corresponds to the position in the intrusion where the strongest Kelvin- Helmholtz billows form. Closer to the front, the relative flow within the head is weak, which explains why Benjamin’s (1968) energy-conserving gravity current theory accurately predicts the behavior of dissipative gravity currents.


2019 ◽  
Vol 869 ◽  
pp. 610-633 ◽  
Author(s):  
L. Chiapponi ◽  
M. Ungarish ◽  
D. Petrolo ◽  
V. Di Federico ◽  
S. Longo

We present a combined theoretical and experimental study of lock-release inertial gravity currents (GCs) propagating in a horizontal channel of circular cross-section with open-top surface in the non-Boussinesq regime. A two-layer shallow-water (SW) model is developed for a generic shape of the cross-section with open top, and then implemented in a finite difference numerical code for the solution in a circular-cross-section channel of the type used in the experiments. The model predicts propagation with (almost) constant speed for a fairly long distance, accompanied by a depression of the ambient free open-top surface behind the front of the current. Sixteen experiments were conducted with a density ratio $r=0.587{-}0.939$ in full-depth and part-depth release conditions, measuring the front speed and the free-surface time series at four cross-sections. The channel was a circular tube 409 cm long, with a radius of 9.5 cm; the lengths of the locks were 52 and 103.5 cm. Density contrast was obtained by adding sodium chloride and dipotassium phosphate to fresh water. The theoretical values of the front speed and of the depression overestimate the experimental values, but they predict correctly their trend for varying parameters and provide reliable insights into the underlying mechanisms. In particular, we demonstrate that the circular cross-section increases the speed of propagation as compared to the standard rectangular cross-section case (for the same initial height and density ratio). The discrepancies between the SW predictions and the present experiments are of the same order of magnitude as those of previously published results for simpler systems (Boussinesq, rectangular). In addition to the depression, which is a wave bound to, and following the front of, the GC, the system also displays two kinds of free-surface waves, namely the initial bump (its amplitude is of the same order as the depression) and some short-length and low-amplitude waves in the tail of the bump. These free waves propagate with a celerity well predicted by the ‘fast’ eigenvalues of the mathematical model. Comparison is provided with the celerity of a solitary wave. It is expected that discrepancies between theory and experiments can be partly attributed to the presence of these waves. The reported insights and SW prediction method can be applied to a variety of cross-sections of practical interest (triangles, trapezoids, etc.).


2009 ◽  
Vol 635 ◽  
pp. 361-388 ◽  
Author(s):  
SENG KEAT OOI ◽  
GEORGE CONSTANTINESCU ◽  
LARRY WEBER

Compositional gravity current flows produced by the instantaneous release of a finite-volume, heavier lock fluid in a rectangular horizontal plane channel are investigated using large eddy simulation. The first part of the paper focuses on the evolution of Boussinesq lock-exchange gravity currents with a large initial volume of the release during the slumping phase in which the front of the gravity current propagates with constant speed. High-resolution simulations are conducted for Grashof numbers $\sqrt {Gr}$ = 3150 (LGR simulation) and $\sqrt {Gr}$ = 126000 (HGR simulation). The Grashof number is defined with the channel depth h and the buoyancy velocity ub = $\sqrt {g'h}$ (g′ is the reduced gravity). In the HGR simulation the flow is turbulent in the regions behind the two fronts. Compared to the LGR simulation, the interfacial billows lose their coherence much more rapidly (over less than 2.5h behind the front), which results in a much faster decay of the large-scale content and turbulence intensity in the trailing regions of the flow. A slightly tilted, stably stratified interface layer develops away from the two fronts. The concentration profiles across this layer can be approximated by a hyperbolic tangent function. In the HGR simulation the energy budget shows that for t > 18h/ub the flow reaches a regime in which the total dissipation rate and the rates of change of the total potential and kinetic energies are constant in time. The second part of the paper focuses on the study of the transition of Boussinesq gravity currents with a small initial volume of the release to the buoyancy–inertia self-similar phase. When the existence of the back wall is communicated to the front, the front speed starts to decrease, and the current transitions to the buoyancy–inertia phase. Three high-resolution simulations are performed at Grashof numbers between $\sqrt {Gr}$ = 3 × 104 and $\sqrt {Gr}$ = 9 × 104. Additionally, a calculation at a much higher Grashof number ($\sqrt {Gr}$ = 106) is performed to understand the behaviour of a bottom-propagating current closer to the inviscid limit. The three-dimensional simulations correctly predict a front speed decrease proportional to t−α (the time t is measured from the release time) over the buoyancy–inertia phase, with the constant α approaching the theoretical value of 1/3 as the current approaches the inviscid limit. At Grashof numbers for which $\sqrt {Gr}$ > 3 × 104, the intensity of the turbulence in the near-wall region behind the front is large enough to induce the formation of a region containing streaks of low and high streamwise velocities. The streaks are present well into the buoyancy–inertia phase before the speed of the front decays below values at which the streaks can be sustained. The formation of the velocity streaks induces a streaky distribution of the bed friction velocity in the region immediately behind the front. This distribution becomes finer as the Grashof number increases. For simulations in which the only difference was the value of the Grashof number ($\sqrt {Gr}$ = 4.7 × 104 versus $\sqrt {Gr}$ = 106), analysis of the non-dimensional bed friction velocity distributions shows that the capacity of the gravity current to entrain sediment from the bed increases with the Grashof number. Past the later stages of the transition to the buoyancy–inertia phase, the temporal variations of the potential energy, the kinetic energy and the integral of the total dissipation rate are logarithmic.


2019 ◽  
Vol 874 ◽  
pp. 235-262 ◽  
Author(s):  
Thomas D. Nevins ◽  
Douglas H. Kelley

The mixing of a reactive scalar by a fluid flow can have a significant impact on reaction dynamics and the growth of reacted regions. However, experimental studies of the fluid mechanics of reactive mixing present significant challenges and puzzling results. The observed speed at which reacted regions expand can be separated into a contribution from the underlying flow and a contribution from reaction–diffusion dynamics, which we call the chemical front speed. In prior work (Nevins & Kelley, Chaos, vol. 28 (4), 2018, 043122), we were surprised to observe that the chemical front speed increased where the underlying flow in a thin layer was faster. In this paper, we show that the increase is physical and is caused by smearing of reaction fronts by vertical shear. We show that the increase occurs not only in thin-layer flows with a free surface, but also in Hele-Shaw systems. We draw these conclusions from a series of simulations in which reaction fronts are located according to depth-averaged concentration, as is common in laboratory experiments. Where the front profile is deformed by shear, the apparent front speed changes as well. We compare the simulations to new experimental results and find close quantitative agreement. We also show that changes to the apparent front speed are reduced approximately 80 % by adding a lubrication layer.


2006 ◽  
Vol 46 (4) ◽  
pp. 611-613 ◽  
Author(s):  
Manoj Kumar Choudhary ◽  
Bikash Nandy

2002 ◽  
Vol 456 ◽  
pp. 33-48 ◽  
Author(s):  
RYAN J. LOWE ◽  
P. F. LINDEN ◽  
JAMES W. ROTTMAN

Laboratory experiments were performed in which an intrusive gravity current was observed using shadowgraph and particle tracking methods. The intrusion was generated in a two-layer fluid with a sharp interface by mixing the fluid behind a vertical lock gate and then suddenly withdrawing the gate from the tank. The purpose of the experiments was to determine the structure of the velocity field inside the intrusion and the stability characteristics of the interface. Soon after the removal of the lock gate, the front of the intrusive gravity current travelled at a constant speed close to the value predicted by theory for an energy-conserving gravity current. The observed structure of the flow inside the intrusion can be divided into three regions. At the front of the intrusion there is an energy-conserving head region in which the fluid velocity is nearly uniform with speed equal to the front speed. This is followed by a dissipative wake region in which large billows are present with their associated mixing and in which the fluid velocity is observed to be non-uniform and have a maximum speed approximately 50% greater than the front speed. Behind the wake region is a tail region in which there is very little mixing and the velocity field is nearly uniform with a speed slightly faster than the front speed.


Author(s):  
Virginia G. DeGiorgi ◽  
Nithyanand Kota ◽  
Alexis C. Lewis ◽  
Siddiq M. Qidwai

This work presents the numerical modeling of two-dimensional stable corrosion pit growth by solving the Laplace equation which defines the electric potential within the electrolyte. Microstructural features representative of a 316 stainless steel provides the matrix in which the pit grows. Real microstructural features are incorporated into the computational model. The objective is to determine the influence of the microstructure, specifically crystallographic orientation, on the shape of the pit as it grows over time. The high-resolution definition of the microstructure is obtained by the orientation image microscopy (OIM) technique and is incorporated into the finite element model through a grid-based interpolation functionality. The steel-electrolyte corrosion front movement is simulated with the help of the arbitrary Lagrangian-Eulerian (ALE) meshing technique. The front speed, or the material dissolution rate, is approximated with the use of a Butler-Volmer relationship that relates the dissolution current density to the applied overpotential. The results show that small fluctuations (5–10%) in corrosion potential due to the changing crystal orientation ahead of the corrosion front result in variations in pit shape similar to experimental observations reported in the literature.


Sign in / Sign up

Export Citation Format

Share Document