scholarly journals Physical and Mechanical Properties of Concrete with Circulated Fluidized Bed Combustion Fly Ash, Ground Granulated Blast Furnace Slag and Coal Fly Ash

Author(s):  
Maochieh Chi ◽  
Jiang-Jhy Chang ◽  
Weichung Yeih
2019 ◽  
Vol 7 (1) ◽  
pp. 126-136
Author(s):  
Hakan Çağlar ◽  
Arzu Çağlar

In this study, it is aimed to make improvements on blended brick (1) which is the first building material has a history of at least 10,000 years. To the blended brick which is a traditional material was kept constant at 5% the addition of fly ash which is industrial waste. It was aim of determine of the effect on the physical and mechanical properties of the blended brick using different ratios (5%, 10%, 15% and 20%) blast furnace slag. In the first stage, the production of fly ash-based blast furnace slag doped sample of blended brick was performed. In the second stage, a variety of experiments were applied to determine the physical and mechanical properties of the blended brick sample. As a result; It has been determined that unit volume weight and compressive strength decreases with the use of industrial wastes in blended brick production. They have occured an increase in porosity and capillary water absorption values. The use of industrial wastes in the production of blended bricks will contribute both improve the properties of the bricks and   the reduction of wastes left to the environment.


2021 ◽  
Vol 13 (2) ◽  
pp. 873
Author(s):  
Numanuddin M. Azad ◽  
S.M. Samindi M.K. Samarakoon

There has been a significant movement in the past decades to develop alternative sustainable building material such as geopolymer cement/concrete to control CO2 emission. Industrial waste contains pozzolanic minerals that fulfil requirements to develop the sustainable material such as alumino-silicate based geopolymer. For example, industrial waste such as red mud, fly ash, GBFS/GGBS (granulated blast furnace slag/ground granulated blast furnace slag), rice husk ash (RHA), and bagasse ash consist of minerals that contribute to the manufacturing of geopolymer cement/concrete. A literature review was carried out to study the different industrial waste/by-products and their chemical composition, which is vital for producing geopolymer cement, and to discuss the mechanical properties of geopolymer cement/concrete manufactured using different industrial waste/by-products. The durability, financial benefits and sustainability aspects of geopolymer cement/concrete have been highlighted. As per the experimental results from the literature, the cited industrial waste has been successfully utilized for the synthesis of dry or wet geopolymers. The review revealed that that the use of fly ash, GBFS/GGBS and RHA in geopolymer concrete resulted high compressive strength (i.e., 50 MPa–70 MPa). For high strength (>70 MPa) achievement, most of the slag and ash-based geopolymer cement/concrete in synergy with nano processed waste have shown good mechanical properties and environmental resistant. The alkali-activated geopolymer slag, red mud and fly ash based geopolymer binders give a better durability performance compared with other industrial waste. Based on the sustainability indicators, most of the geopolymers developed using the industrial waste have a positive impact on the environment, society and economy.


2020 ◽  
Vol 2 (3) ◽  
pp. 128-133
Author(s):  
Addepalli Mallinadh Kashyap ◽  
Tanimki Chandra Sekhar Rao ◽  
N.V.Ramana Rao

The utilisation of pozzolanic materials as the replacement to conventional cement material have the potentiality to mitigate the pollution caused by the émission of carbon based green house gases which are a main source for global warming problem. For every production of 1 ton of cement it was approximated that the emission of carbon based green house gases are about 1 ton. Keeping this in view, a new material called Geopolymer which was first coined by Davidovits has gained a lot of interest by the researchers. In this study, different molarity variations of NaOH in the order of 4M, 6M, 8M, 10M, 12M and 14M and also the blending of  mineral admixtures like Fly Ash and Ground Granulated Blast Furnace Slag with percentages (50%+50%) and the mechanical properties of normal M30 and high strength grade M70 binary blended Geopolymer concrete were studied after 28 days of ambient curing and were reported. The test results revealed that the effect of molar concentration of NaOH at 12 M is effective and the optimum replacement of mineral composition of source materials is (50%+50%) fly ash and ground granulated blast furnace slag.  


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 211
Author(s):  
Mateusz Sitarz ◽  
João Castro-Gomes ◽  
Izabela Hager

Mineral geopolymer binders can be an attractive and more sustainable alternative to traditional Portland cement materials for special applications. In geopolymer technology the precursor is a source of silicon and aluminium oxides, the second component is an alkaline solution. In the synthesis of geopolymer binders the most commonly used alkaline solution is a mixture of sodium or potassium water glass with sodium or potassium hydroxide or silicate solution with a low molar ratio, which is more convenient and much safer in use. In this paper, we present the influence of sodium or potassium silicate solution on the physical and mechanical properties of fly ash and ground granulated blast furnace slag-based geopolymer mortars. Mercury intrusion porosimetry and microstructural observation allowed for comparing the structure of materials with a different type of alkaline solution. The evolution of compressive and flexural tensile strength with time determined for composites using 10%, 30% and 50% slag contents (referring to fly ash mass) was analysed. The tests were performed after 3, 7, 14 and 28 days. It was observed that, as the amount of slag used increases in the precursor, the strength of the material grows. Mortars with the sodium alkaline solution were characterised by a higher strength at a young age. However, the values of strength 28 days were higher for geopolymers with potassium alkaline solution reaching 75 MPa in compression. Geopolymer mortar microstructure observation indicates a high matrix heterogeneity with numerous microcracks. Matrix defects may be caused by the rapid kinetics of the material binding reaction or shrinkage associated with the drying of the material.


Sign in / Sign up

Export Citation Format

Share Document