scholarly journals A Robust Dual Watermarking Encryption Algorithm for Financial Fraud Detection Using High and Low Frequency Components

Author(s):  
Jijun Wang
Author(s):  
G. Y. Fan ◽  
J. M. Cowley

It is well known that the structure information on the specimen is not always faithfully transferred through the electron microscope. Firstly, the spatial frequency spectrum is modulated by the transfer function (TF) at the focal plane. Secondly, the spectrum suffers high frequency cut-off by the aperture (or effectively damping terms such as chromatic aberration). While these do not have essential effect on imaging crystal periodicity as long as the low order Bragg spots are inside the aperture, although the contrast may be reversed, they may change the appearance of images of amorphous materials completely. Because the spectrum of amorphous materials is continuous, modulation of it emphasizes some components while weakening others. Especially the cut-off of high frequency components, which contribute to amorphous image just as strongly as low frequency components can have a fundamental effect. This can be illustrated through computer simulation. Imaging of a whitenoise object with an electron microscope without TF limitation gives Fig. 1a, which is obtained by Fourier transformation of a constant amplitude combined with random phases generated by computer.


Author(s):  
В. М. Мойсишин ◽  
M. V. Lyskanych ◽  
R. A. Zhovniruk ◽  
Ye. P. Majkovych

The purpose of the proposed article is to establish the causes of oscillations of drilling tool and the basic laws of the distribution of the total energy of the process of changing the axial dynamic force over frequencies of spectrum. Variable factors during experiments on the classical plan were the rigidity of drilling tool and the hardness of the rock. According to the results of research, the main power of the process of change of axial dynamic force during drilling of three roller cone bits is in the frequency range 0-32 Hz in which three harmonic frequency components are allocated which correspond to the theoretical values of low-frequency and gear oscillations of the chisel and proper oscillations of the bit. The experimental values of frequencies of harmonic components of energy and normalized spectrum as well as the magnitude of the dispersion of the axial dynamic force and its normalized values at these frequencies are presented. It has been found that with decreasing rigidity of the drilling tool maximum energy of axial dynamic force moves from the low-frequency oscillation region to the tooth oscillation area, intensifying the process of rock destruction and, at the same time, protecting the tool from the harmful effects of the vibrations of the bit. Reducing the rigidity of the drilling tool protects the bit from the harmful effects of the vibrations generated by the stand. The energy reductions in these fluctuations range from 47 to 77%.


2019 ◽  
Vol 14 (7) ◽  
pp. 658-666
Author(s):  
Kai-jian Xia ◽  
Jian-qiang Wang ◽  
Jian Cai

Background: Lung cancer is one of the common malignant tumors. The successful diagnosis of lung cancer depends on the accuracy of the image obtained from medical imaging modalities. Objective: The fusion of CT and PET is combining the complimentary and redundant information both images and can increase the ease of perception. Since the existing fusion method sare not perfect enough, and the fusion effect remains to be improved, the paper proposes a novel method called adaptive PET/CT fusion for lung cancer in Piella framework. Methods: This algorithm firstly adopted the DTCWT to decompose the PET and CT images into different components, respectively. In accordance with the characteristics of low-frequency and high-frequency components and the features of PET and CT image, 5 membership functions are used as a combination method so as to determine the fusion weight for low-frequency components. In order to fuse different high-frequency components, we select the energy difference of decomposition coefficients as the match measure, and the local energy as the activity measure; in addition, the decision factor is also determined for the high-frequency components. Results: The proposed method is compared with some of the pixel-level spatial domain image fusion algorithms. The experimental results show that our proposed algorithm is feasible and effective. Conclusion: Our proposed algorithm can better retain and protrude the lesions edge information and the texture information of lesions in the image fusion.


Author(s):  
ZHAO Baiting ◽  
WANG Feng ◽  
JIA Xiaofen ◽  
GUO Yongcun ◽  
WANG Chengjun

Background:: Aiming at the problems of color distortion, low clarity and poor visibility of underwater image caused by complex underwater environment, a wavelet fusion method UIPWF for underwater image enhancement is proposed. Methods:: First of all, an improved NCB color balance method is designed to identify and cut the abnormal pixels, and balance the color of R, G and B channels by affine transformation. Then, the color correction map is converted to CIELab color space, and the L component is equalized with contrast limited adaptive histogram to obtain the brightness enhancement map. Finally, different fusion rules are designed for low-frequency and high-frequency components, the pixel level wavelet fusion of color balance image and brightness enhancement image is realized to improve the edge detail contrast on the basis of protecting the underwater image contour. Results:: The experiments demonstrate that compared with the existing underwater image processing methods, UIPWF is highly effective in the underwater image enhancement task, improves the objective indicators greatly, and produces visually pleasing enhancement images with clear edges and reasonable color information. Conclusion:: The UIPWF method can effectively mitigate the color distortion, improve the clarity and contrast, which is applicable for underwater image enhancement in different environments.


Author(s):  
Priya R. Kamath ◽  
Kedarnath Senapati ◽  
P. Jidesh

Speckles are inherent to SAR. They hide and undermine several relevant information contained in the SAR images. In this paper, a despeckling algorithm using the shrinkage of two-dimensional discrete orthonormal S-transform (2D-DOST) coefficients in the transform domain along with shock filter is proposed. Also, an attempt has been made as a post-processing step to preserve the edges and other details while removing the speckle. The proposed strategy involves decomposing the SAR image into low and high-frequency components and processing them separately. A shock filter is used to smooth out the small variations in low-frequency components, and the high-frequency components are treated with a shrinkage of 2D-DOST coefficients. The edges, for enhancement, are detected using a ratio-based edge detection algorithm. The proposed method is tested, verified, and compared with some well-known models on C-band and X-band SAR images. A detailed experimental analysis is illustrated.


2019 ◽  
Vol 16 (6) ◽  
pp. 1017-1031 ◽  
Author(s):  
Yong Hu ◽  
Liguo Han ◽  
Rushan Wu ◽  
Yongzhong Xu

Abstract Full Waveform Inversion (FWI) is based on the least squares algorithm to minimize the difference between the synthetic and observed data, which is a promising technique for high-resolution velocity inversion. However, the FWI method is characterized by strong model dependence, because the ultra-low-frequency components in the field seismic data are usually not available. In this work, to reduce the model dependence of the FWI method, we introduce a Weighted Local Correlation-phase based FWI method (WLCFWI), which emphasizes the correlation phase between the synthetic and observed data in the time-frequency domain. The local correlation-phase misfit function combines the advantages of phase and normalized correlation function, and has an enormous potential for reducing the model dependence and improving FWI results. Besides, in the correlation-phase misfit function, the amplitude information is treated as a weighting factor, which emphasizes the phase similarity between synthetic and observed data. Numerical examples and the analysis of the misfit function show that the WLCFWI method has a strong ability to reduce model dependence, even if the seismic data are devoid of low-frequency components and contain strong Gaussian noise.


Author(s):  
Gundula B. Runge ◽  
Al Ferri ◽  
Bonnie Ferri

This paper considers an anytime strategy to implement controllers that react to changing computational resources. The anytime controllers developed in this paper are suitable for cases when the time scale of switching is in the order of the task execution time, that is, on the time scale found commonly with sporadically missed deadlines. This paper extends the prior work by developing frequency-weighted anytime controllers. The selection of the weighting function is driven by the expectation of the situations that would require anytime operation. For example, if the anytime operation is due to occasional and isolated missed deadlines, then the weighting on high frequencies should be larger than that for low frequencies. Low frequency components will have a smaller change over one sample time, so failing to update these components for one sample period will have less effect than with the high frequency components. An example will be included that applies the anytime control strategy to a model of a DC motor with deadzone and saturation nonlinearities.


2012 ◽  
Vol 8 (2) ◽  
pp. 831-839 ◽  
Author(s):  
S. Alessio ◽  
G. Vivaldo ◽  
C. Taricco ◽  
M. Ghil

Abstract. We evaluate the contribution of natural variability to the modern decrease in foraminiferal δ18O by relying on a 2200-yr-long, high-resolution record of oxygen isotopic ratio from a Central Mediterranean sediment core. Pre-industrial values are used to train and test two sets of algorithms that are able to forecast the natural variability in δ18O over the last 150 yr. These algorithms are based on autoregressive models and neural networks, respectively; they are applied separately to each of the δ18O series' significant variability components, rather than to the complete series. The separate components are extracted by singular-spectrum analysis and have narrow-band spectral content, which reduces the forecast error. By comparing the sum of the predicted low-frequency components to its actual values during the Industrial Era, we deduce that the natural contribution to these components of the modern δ18O variation decreased gradually, until it reached roughly 40%, as early as the end of the 1970s.


Author(s):  
Vladimir Barannik ◽  
Andrii Krasnorutsky ◽  
Sergii Shulgin ◽  
Valerii Yeroshenko ◽  
Yevhenii Sidchenko ◽  
...  

The subject of research in the article are the processes of video image processing using an orthogonal transformation for data transmission in information and telecommunication networks. The aim is to build a method of compression of video images while maintaining the efficiency of its delivery at a given informative probability. That will allow to provide a gain in the time of delivery of compressed video images, a necessary level of availability and authenticity at transfer of video data with preservation of strictly statistical regulations and the controlled loss of quality. Task: to study the known algorithms for selective processing of static video at the stage of approximation and statistical coding of the data based on JPEG-platform. The methods used are algorithm based on JPEG-platform, methods of approximation by orthogonal transformation of information blocks, arithmetic coding. It is a solution of scientific task-developed methods for reducing the computational complexity of transformations (compression and decompression) of static video images in the equipment for processing visual information signals, which will increase the efficiency of information delivery.The following results were obtained. The method of video image compression with preservation of the efficiency of its delivery at the set informative probability is developed. That will allow to fulfill the set requirements at the preservation of structural-statistical economy, providing a gain in time to bring compressed images based on the developed method, relative to known methods, on average up to 2 times. This gain is because with a slight difference in the compression ratio of highly saturated images compared to the JPEG-2000 method, for the developed method, the processing time will be less by at least 34%.Moreover, with the increase in the volume of transmitted images and the data transmission speed in the communication channel - the gain in the time of delivery for the developed method will increase. Here, the loss of quality of the compressed/restored image does not exceed 2% by RMS, or not worse than 45 dB by PSNR. What is unnoticeable to the human eye.Conclusions. The scientific novelty of the obtained results is as follows: for the first time the method of classification (separate) coding (compression) of high-frequency and low-frequency components of Walsh transformants of video images is offered and investigated, which allows to consider their different dynamic range and statistical redundancy reduced using arithmetic coding. This method will allow to ensure the necessary level of availability and authenticity when transmitting video data, while maintaining strict statistical statistics.Note that the proposed method fulfills the set tasks to increase the efficiency of information delivery. Simultaneously, the method for reducing the time complexity of the conversion of highly saturated video images using their representation by the transformants of the discrete Walsh transformation was further developed. It is substantiated that the perspective direction of improvement of methods of image compression is the application of orthogonal transformations on the basis of integer piecewise-constant functions, and methods of integer arithmetic coding of values of transformant transformations.It is substantiated that the joint use of Walsh transformation and arithmetic coding, which reduces the time of compression and recovery of images; reduces additional statistical redundancy. To further increase the degree of compression, a classification coding of low-frequency and high-frequency components of Walsh transformants is developed. It is shown that an additional reduction in statistical redundancy in the arrays of low-frequency components of Walsh transformants is achieved due to their difference in representation. Recommendations for the parameters of the compression method for which the lowest value of the total time of information delivery is provided are substantiated.


Sign in / Sign up

Export Citation Format

Share Document