scholarly journals Rock Burst Danger Warning and Large Diameter Drilling Pressure'relief Technology in Fully Mechanized Caving Island Coal Face

Author(s):  
Shitan Gu ◽  
Zhimin Xiao ◽  
Ruifeng Huang ◽  
Yunliang Tan ◽  
Bangyou Jiang ◽  
...  
Keyword(s):  
2012 ◽  
Vol 50 (4) ◽  
pp. 645-648 ◽  
Author(s):  
Xuehua Chen ◽  
Weiqing Li ◽  
Xianyang Yan
Keyword(s):  

2016 ◽  
Vol 26 (6) ◽  
pp. 1125-1133 ◽  
Author(s):  
Xuehua Li ◽  
Fan Pan ◽  
Huaizhen Li ◽  
Min Zhao ◽  
Lingxiao Ding ◽  
...  
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Dongming Guo ◽  
Xinchao Kang ◽  
Zhiying Lu ◽  
Qiyu Chen

According to the characteristics of rock burst of high horizontal stress roadway floor, the rock burst mechanism of roadway floor was studied with the background of south track roadway Xing’an mine. Based on the deflection theory and energy principle of the slab, the mechanical model of the floor of the roadway under high horizontal stress was established, the stress and energy criteria of rock burst occurred in the floor of the roadway were deduced, the prevention and control measures of the floor pressure relief with large diameter borehole and concrete-filled steel tube pile support were put forward, and the key parameters were determined. By establishing a numerical model, the evolution law of plastic zone, horizontal stress, and elastic strain energy density of roadway floor with or without support is contrastively analyzed. The results show that the effective means to prevent and control the floor rock burst is to cut off the stress transfer path by weakening the hard floor to reduce floor energy accumulation so as to reduce the floor rock burst risk. Based on the above research, field tests were carried out, and the microseismic monitoring results showed that the floor pressure relief of large diameter boreholes and concrete-filled steel tube pile support effectively relieved the floor rock burst and guaranteed the safety and efficiency of roadway excavation. This technology can provide a reference for the prevention and control of floor rock burst of similar roadways.


2013 ◽  
Vol 448-453 ◽  
pp. 3859-3862
Author(s):  
Yong Mei

To prevent threaten of impact disaster, high-pressure water is injected into coal face, which is most widely used in impact-type mine. In such cases, by analyzing the rock burst tendency of a particular type of deep mining pit and occurrence of the mining process, rock samples drilled from the coal mine were taken for the conventional mechanical properties test and rock burst tendency test respectively under dry and wet state. Cuttings volume indicator affected by injection has been optimized to improve the prediction sensitivity. "One shift anti-impact, two-shift production "patterns labor organization model, adjusted development system layout and cut drilling index optimizations, as well as the allocation of high-pressure water injection drilling means, greatly improving the water injection effect, which probably provide a reference for similar mines to safe and efficiently mining.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Zhihua Li ◽  
Ke Yang ◽  
Jianshuai Ji ◽  
Biao Jiao ◽  
Xiaobing Tian

A case study based on the 401103 fully mechanized caving face in the Hujiahe Coal Mine was carried out in this research to analyze the rock burst risks in a 54 m-wide coal pillar for roadway protection. Influencing factors of rock burst risks on the working face were analyzed. Stress distribution characteristics on the working face of the wide coal pillar for roadway protection were discussed using FLAC3D numerical simulation software. Spatial distribution characteristics of historical impact events on the working face were also investigated using the microseismic monitoring method. Results show that mining depth, geological structure, outburst proneness of coal strata, roof strata structure, adjacent mining area, and mining influence of the current working face are the main influencing factors of rock burst on the working face. Owing to the collaborative effects of front abutment pressure of the working face and lateral abutment pressure in the goaf, the coal pillar is in the ultimate equilibrium state and microseismic events mainly concentrate in places surrounding the coal pillars. Hence, wide coal pillars become the regions with rock burst risks on the working face. The working face adopts some local prevention technologies, such as pressure relief through presplitting blasting in roof, pressure relief through large-diameter pores in coal seam, coal seam water injection, pressure relief through large-diameter pores at bottom corners, and pressure relief through blasting at bottom corners. Moreover, some regional prevention technologies were proposed for narrow coal pillar for roadway protection, including gob-side entry, layer mining, and fully mechanized top-coal caving face with premining top layer.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Gao Xu ◽  
Zuo Minghui ◽  
Shu Yanmin

Based on the engineering background, the 41051 working face of the 65th coal mine in Qitaihe Xinxing Mine was regarded as the engineering background, by using of the comprehensive research methods such as theoretical analysis and calculation, FLAC3D numerical simulation, physical parameters of coal and rock in laboratory, and the field industrial measurement, to research on the large drilling relieving rock burst mechanism and parameter setting in reasonable. The distribution of stress and plastic zone in drilling surrounding rock and its influence parameters are clarified, and the distribution of the “butterfly plastic zone” and the mutation condition of the “butterfly plastic zone” in trigger stress state are explored. On the basis, combined with theoretical analysis and numerical simulation, studying the rock burst prevention and treatment mechanism in large drilling, through the statistics of the Xinxing mine pressure characteristics, the measurement of the physical parameters of coal and rock and the test of ground stress finding is that the coal satisfies “Three hard” condition in Xinxing mine and is affected by larger horizontal tectonic stress. Combined with the real geological conditions, the layout parameters of relief pressure large drilling are simulated, and the result shows that the drilling of 600 diameters and 10 m pitch of hole and throughout the working face is reasonable, and the effect is obvious about pressure relief. For the practical implementation, the electromagnetic radiation monitoring is used to evaluate the effect in field; to comprehensive analysis, the relief pressure large drilling has obvious control effect to the 41051 workface rock burst.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Wenjing Liu ◽  
Deyu Qian ◽  
Xingguo Yang ◽  
Sujian Wang ◽  
Jinping Deng ◽  
...  

Rock burst is a typical dynamic disaster in deep underground coal mining. Based on the support problems of the deep roadways in fully mechanized caving face 401111 of Hujiahe Coal Mine suffering from rock burst in Shaanxi Province of China, the failure law and influencing factors of the surrounding rock of the roadway are analyzed. The results show that the deformation of surrounding rock in the roadway shows the characteristics of elastic, plastic transformation, rheology, and expansion. At the same time, it has the typical characteristics of deep roadway, such as the fast deformation speed, long duration, asymmetric deformation, and large loose broken area of surrounding rock. Based on the principle of “strengthening support in shallow zones” and “deep pressure relief in deep zones” in the surrounding rock, the control scheme of surrounding rock in the return roadway of fully mechanized caving working face 401111 is proposed by taking the large diameter pressure relief and deep hole blasting as the main means of pressure relief. The practice shows that the surrounding rock of the return roadway is relatively stable after the implementation of the new scheme, which shows that the design of the new support scheme is reasonable and reliable. It is of great significance for the stability control of surrounding rock of the mining roadway suffering from rock burst.


2018 ◽  
Vol 22 (4) ◽  
pp. 609-622 ◽  
Author(s):  
Guangjian Liu ◽  
Zonglong Mu ◽  
Jianjun Chen ◽  
Jing Yang ◽  
Jinglong Cao

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
X. S. Liu ◽  
J. Tan ◽  
Y. L. Tan ◽  
S. C. Hu

The fault-slip type of rock burst is a major threat to the safety of coal mining, and effectively recognizing its signals patterns is the foundation for the early warning and prevention. At first, a mechanical model of the fault-slip was established and the mechanism of the rock burst induced by the fault-slip was revealed. Then, the patterns of the electromagnetic radiation, acoustic emission (AE), and microseismic signals in the fault-slip type of rock burst were proposed, in that before the rock burst occurs, the electromagnetic radiation intensity near the sliding surface increases rapidly, the AE energy rises exponentially, and the energy released by microseismic events experiences at least one peak and is close to the next peak. At last, in situ investigations were performed at number 1412 coal face in the Huafeng Mine, China. Results showed that the signals patterns proposed are in good agreement with the process of the fault-slip type of rock burst. The pattern recognition can provide a basis for the early warning and the implementation of relief measures of the fault-slip type of rock burst.


Sign in / Sign up

Export Citation Format

Share Document