scholarly journals Face Mask Detection

Businessesare constantly overhauling their existing infrastructure and processes to be more efficient, safe, and usable for employees, customers, and the community. With the ongoing pandemic, it's even more important to have advanced applications and services in place to mitigate risk. For public safety and health, authorities are recommending the use of face masks and coverings to control the spread of Coronovirus. The COVID-19 pandemic is devastation to themankind irrespective of caste, creed, gender, and religion. Using a face mask can undoubtedly help in managing the spread of the virus. COVID-19 face mask detector uses deep learning techniques to successfully test whether a person is wearing a face mask or not. Using a deep learning method called Convolutional Neural Network, got an accuracy of 98.6 %. It can work with still images and also works with a live video stream. Cases in which the mask is improperly worn are when the nose and mouth are partially covered is considered as the mask is not worn. Our face mask identifier is the least complex in structure and gives quick results and hence can be used in CCTV footage to detect whether a person is wearing a mask perfectly so that he does not pose any danger to others. Mass screening is possible and hence can be used in crowded places like railway stations, bus stops, markets, streets, mall entrances, schools, colleges, etc. By monitoring the placement of the face mask on the face, we can make sure that an individual wears it the right way and helps to curb the scope of the virus

Author(s):  
Pinki and Prof. Sachin Garg

In the present scenario due to Covid-19, there is no efficient face mask detection applications which are now in high demand for transportation means, densely populated areas, residential districts, large-scale manufacturers and other enterprises to ensure safety. This system can therefore be used in real-time applications which require face-mask detection for safety purposes due to the outbreak of Covid-19. This project can be integrated with embedded systems for application in airports, railway stations, offices, schools, and public places to ensure that public safety guidelines are followed. To identify the person on image/video stream wearing face mask or not. If the person doesn’t wear a mask, the notification will be sent to the respected admin with the help of Python and deep learning algorithm by using the Convolutional Neural Network, Keras Framework and OpenCV.


Author(s):  
Prerna Gupta Dr. Bhoomi Gupta and Vandana Choudhary

Amid the global crisis of the Corona virus pandemic, new demands have emerged in the market which uses Video Analytics for finding solutions to halt the transmission of the Virus. The COVID - 19 pandemic is devastating mankind irrespective of caste, creed, gender, and religion. Until a vaccine is discovered, we should do our bit to constrain the expanse of the corona virus. Using a face mask can undoubtedly help in managing the spread of the virus. The face mask detector, a video analytic solution uses MobileNetV2 model, deep learning techniques to successfully test whether a person is wearing a face mask or not. The face mask identifier is least complex in structure and gives quick results and hence can be used in CCTV footage to detect whether a person is wearing a mask perfectly so that he does not pose any danger to others. Mass screening is possible with video analytics and hence can be used in crowded places like Airports, Hospitals Entrance Exam Centers, Schools and Colleges.


Face recognition plays a vital role in security purpose. In recent years, the researchers have focused on the pose illumination, face recognition, etc,. The traditional methods of face recognition focus on Open CV’s fisher faces which results in analyzing the face expressions and attributes. Deep learning method used in this proposed system is Convolutional Neural Network (CNN). Proposed work includes the following modules: [1] Face Detection [2] Gender Recognition [3] Age Prediction. Thus the results obtained from this work prove that real time age and gender detection using CNN provides better accuracy results compared to other existing approaches.


2021 ◽  
Vol 11 (8) ◽  
pp. 3495
Author(s):  
Shabir Hussain ◽  
Yang Yu ◽  
Muhammad Ayoub ◽  
Akmal Khan ◽  
Rukhshanda Rehman ◽  
...  

The spread of COVID-19 has been taken on pandemic magnitudes and has already spread over 200 countries in a few months. In this time of emergency of COVID-19, especially when there is still a need to follow the precautions and developed vaccines are not available to all the developing countries in the first phase of vaccine distribution, the virus is spreading rapidly through direct and indirect contacts. The World Health Organization (WHO) provides the standard recommendations on preventing the spread of COVID-19 and the importance of face masks for protection from the virus. The excessive use of manual disinfection systems has also become a source of infection. That is why this research aims to design and develop a low-cost, rapid, scalable, and effective virus spread control and screening system to minimize the chances and risk of spread of COVID-19. We proposed an IoT-based Smart Screening and Disinfection Walkthrough Gate (SSDWG) for all public places entrance. The SSDWG is designed to do rapid screening, including temperature measuring using a contact-free sensor and storing the record of the suspected individual for further control and monitoring. Our proposed IoT-based screening system also implemented real-time deep learning models for face mask detection and classification. This module classified individuals who wear the face mask properly, improperly, and without a face mask using VGG-16, MobileNetV2, Inception v3, ResNet-50, and CNN using a transfer learning approach. We achieved the highest accuracy of 99.81% while using VGG-16 and the second highest accuracy of 99.6% using MobileNetV2 in the mask detection and classification module. We also implemented classification to classify the types of face masks worn by the individuals, either N-95 or surgical masks. We also compared the results of our proposed system with state-of-the-art methods, and we highly suggested that our system could be used to prevent the spread of local transmission and reduce the chances of human carriers of COVID-19.


Author(s):  
Ismail Nasri ◽  
Mohammed Karrouchi ◽  
Hajar Snoussi ◽  
Abdelhafid Messaoudi ◽  
Kamal Kassmi

2021 ◽  
Vol 38 (6) ◽  
pp. 1875-1885
Author(s):  
Ruchi Jayaswal ◽  
Manish Dixit

A novel coronavirus has spread over the world and has become an outbreak. This, according to a WHO report, is an infectious disease that aims to spread. As a consequence, taking precautions is the only method to avoid catching this virus. The most important preventive measure against COVID-19 is to wear a mask. In this paper, a framework is designed for face mask detection using a deep learning approach. This paper aims to predict a person having a mask or unmask and also presents a proposed dataset named RTFMD (Real-Time Face Mask Dataset) to accomplish this objective. We have also taken the RFMD dataset from the internet to analyze the performance of system. Contrast Limited Adaptive Histogram Equalization (CLAHE) technique is applied at the time of pre-processing to enhance the visual quality of images. Subsequently, Inceptionv3 model used to train the face mask images and SSD face detector model has been used for face detection. Therefore, this paper proposed a model CLAHE-SSD_IV3 to classify the mask or without mask images. The system is also tested at VGG16, VGG19, Xception, MobilenetV2 models at different hyperparameters values and analyze them. Furthermore, compared the result of the proposed dataset RTFMD with the RFMD dataset. Additionally, proposed approach is compared with the existing approach on Face Mask dataset and RTFMD dataset. The outcomes have obtained 98% test accuracy on this proposed dataset RTFMD while 97% accuracy on the RFMD dataset in real-time.


The corona epidemic poses a global health problem and therefore effective preventive measures are worn in public places,according to the World Health Organization (WHO). The COVID-19 epidemic has forced governments around the world to impose restrictions on the transmission of the virus. Reports show that wearing the right face while in public places and at work clearly reduces the risk of transmission. An effective and economical way to use machine learning is to create a safe environment for device setup. A hybrid model using the depth of the face mask detection machine will be introduced. The face mask detection databasecontains a mask and in addition to the facial images, we will use OpenCV to perform real-time facial detection from live streaming via our webcam. We will use the database to create a COVID-19 face mask detector from a computer view using Python, OpenCV, and Tensor Flow and Cameras. We aim to determine whether the person in the picture/video is wearing a face mask or not with the help of computer vision and in-depth reading and to show the same with caution. Steps to modeling are data collection, pre-processing, data classification, model testing, and modeling


2021 ◽  
Author(s):  
◽  
V. H. Benitez-Baltazar

A new and deadly virus known as SARS-CoV-2, which is responsible for the coronavirus disease (COVID-19), is spreading rapidly around the world causing more than 3 million deaths. Hence, there is an urgent need to find new and innovative ways to reduce the likelihood of infection. One of the most common ways of catching the virus is by being in contact with droplets delivered by a sick person. The risk can be reduced by wearing a face mask as suggested by the World Health Organization (WHO), especially in closed environments such as classrooms, hospitals, and supermarkets. However, people hesitate to use a face mask leading to an increase in the risk of spreading the disease, moreover when the face mask is used, sometimes it is worn in the wrong way. In this work, an autonomic face mask detection system with deep learning and powered by the image tracking technique used for the augmented reality development is proposed as a mechanism to request the correct use of face masks to grant access to people to critical areas. To achieve this, a machine learning model based on Convolutional Neural Networks was built on top of an IoT framework to enforce the correct use of the face mask in required areas as it is requested by law in some regions.


2021 ◽  
Author(s):  
Mayuri Karvande ◽  
Apoorv Katkar ◽  
Nikhil Koli ◽  
Amit Joshi ◽  
Suraj Sawant

In today’s world, the security of every individual has become an important aspect. There is a need for constant monitoring in public places. A Manual operating camera system is an unreliable and very basic and poor method for this purpose. Intelligent Video Surveillance is an approach where multiple CCTVs constantly record the scenes and proper algorithms are deployed in order to detect and monitor activities. Deep Learning frameworks and algorithms like Kera’s, YOLO, Convolutional Neural Networks or backbones for image detection like VGG16, Mobile net, Resnet101 have been used for human and weapon detection. The paper focuses on deep learning techniques and threading to collectively develop a Parallel Deep Learning Framework for Video Surveillance that aims at striking the right balance between accuracy and system performance or stability. Threading is used in terms of implementation of a uniquely proposed Dynamic Selection Algorithm that uses two backbones for object detection and switches between them based on the queue status for achieving system stability. A uniquely designed logistic regression filter is also implemented that boosts the system performance.


Author(s):  
Nitin .

Machine learning is a method of data analysis that automates analytical model building. It is a branch of artificial intelligence based on the idea that systems can learn from data, identify patterns and make decisions with minimal human intervention. In human interactions, the face is the most important factor as it contains important information about a person or individual. All humans have the ability to recognise individuals from their faces. Now following system is based on face recognition to maintain the attendance record of students. The daily attendance of students is recorded subject wise which is stored already by the administrator. As the time for corresponding subject arrives the system automatically starts taking snaps and then apply face detection and recognition technique to the given image and the recognize students are marked as present and their attendance update with corresponding time and subject id. We have used deep learning techniques to develop this system, histogram of oriented gradient method is used to detect faces in images and deep learning method is used to compute and compare facial feature of students to recognize them.


Sign in / Sign up

Export Citation Format

Share Document