scholarly journals Face Mask Detection System using Deep Learning

Author(s):  
Pinki and Prof. Sachin Garg

In the present scenario due to Covid-19, there is no efficient face mask detection applications which are now in high demand for transportation means, densely populated areas, residential districts, large-scale manufacturers and other enterprises to ensure safety. This system can therefore be used in real-time applications which require face-mask detection for safety purposes due to the outbreak of Covid-19. This project can be integrated with embedded systems for application in airports, railway stations, offices, schools, and public places to ensure that public safety guidelines are followed. To identify the person on image/video stream wearing face mask or not. If the person doesn’t wear a mask, the notification will be sent to the respected admin with the help of Python and deep learning algorithm by using the Convolutional Neural Network, Keras Framework and OpenCV.

Author(s):  
Samrat Bhardwaj ◽  
Neha Agrawal ◽  
M L Sharma

In the present scenario due to Covid-19, there are no efficient face mask detection applications which are now in high demand for transportation means, densely populated areas, residential districts, large-scale manufacturers and other enterprises to ensure safety. This system can therefore be used in real-time applications which require face-mask detection for safety purposes due to the outbreak of Covid-19. This project can be integrated with embedded systems for application in airports, railway stations, offices, schools, and public places to ensure that public safety guidelines are followed. To identify the person on image/video stream wearing face mask or not. If the person doesn’t wear a mask, the notification will be sent to the respected admin with the help of Python and deep learning algorithm by using the Convolutional Neural Network, Keras Framework and OpenCV. Keywords: Computer Vision, Object Detection, Object Tracking, COVID-19, Face Masks, Safety Improvement


2020 ◽  
Vol 13 (1) ◽  
pp. 9
Author(s):  
Herminarto Nugroho ◽  
Meredita Susanty ◽  
Ade Irawan ◽  
Muhamad Koyimatu ◽  
Ariana Yunita

This paper proposes a fully convolutional variational autoencoder (VAE) for features extraction from a large-scale dataset of fire images. The dataset will be used to train the deep learning algorithm to detect fire and smoke. The features extraction is used to tackle the curse of dimensionality, which is the common issue in training deep learning with huge datasets. Features extraction aims to reduce the dimension of the dataset significantly without losing too much essential information. Variational autoencoders (VAEs) are powerfull generative model, which can be used for dimension reduction. VAEs work better than any other methods available for this purpose because they can explore variations on the data in a specific direction.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Bangtong Huang ◽  
Hongquan Zhang ◽  
Zihong Chen ◽  
Lingling Li ◽  
Lihua Shi

Deep learning algorithms are facing the limitation in virtual reality application due to the cost of memory, computation, and real-time computation problem. Models with rigorous performance might suffer from enormous parameters and large-scale structure, and it would be hard to replant them onto embedded devices. In this paper, with the inspiration of GhostNet, we proposed an efficient structure ShuffleGhost to make use of the redundancy in feature maps to alleviate the cost of computations, as well as tackling some drawbacks of GhostNet. Since GhostNet suffers from high computation of convolution in Ghost module and shortcut, the restriction of downsampling would make it more difficult to apply Ghost module and Ghost bottleneck to other backbone. This paper proposes three new kinds of ShuffleGhost structure to tackle the drawbacks of GhostNet. The ShuffleGhost module and ShuffleGhost bottlenecks are utilized by the shuffle layer and group convolution from ShuffleNet, and they are designed to redistribute the feature maps concatenated from Ghost Feature Map and Primary Feature Map. Besides, they eliminate the gap of them and extract the features. Then, SENet layer is adopted to reduce the computation cost of group convolution, as well as evaluating the importance of the feature maps which concatenated from Ghost Feature Maps and Primary Feature Maps and giving proper weights for the feature maps. This paper conducted some experiments and proved that the ShuffleGhostV3 has smaller trainable parameters and FLOPs with the ensurance of accuracy. And with proper design, it could be more efficient in both GPU and CPU side.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Liding Yao ◽  
Xiaojun Guan ◽  
Xiaowei Song ◽  
Yanbin Tan ◽  
Chun Wang ◽  
...  

AbstractRib fracture detection is time-consuming and demanding work for radiologists. This study aimed to introduce a novel rib fracture detection system based on deep learning which can help radiologists to diagnose rib fractures in chest computer tomography (CT) images conveniently and accurately. A total of 1707 patients were included in this study from a single center. We developed a novel rib fracture detection system on chest CT using a three-step algorithm. According to the examination time, 1507, 100 and 100 patients were allocated to the training set, the validation set and the testing set, respectively. Free Response ROC analysis was performed to evaluate the sensitivity and false positivity of the deep learning algorithm. Precision, recall, F1-score, negative predictive value (NPV) and detection and diagnosis were selected as evaluation metrics to compare the diagnostic efficiency of this system with radiologists. The radiologist-only study was used as a benchmark and the radiologist-model collaboration study was evaluated to assess the model’s clinical applicability. A total of 50,170,399 blocks (fracture blocks, 91,574; normal blocks, 50,078,825) were labelled for training. The F1-score of the Rib Fracture Detection System was 0.890 and the precision, recall and NPV values were 0.869, 0.913 and 0.969, respectively. By interacting with this detection system, the F1-score of the junior and the experienced radiologists had improved from 0.796 to 0.925 and 0.889 to 0.970, respectively; the recall scores had increased from 0.693 to 0.920 and 0.853 to 0.972, respectively. On average, the diagnosis time of radiologist assisted with this detection system was reduced by 65.3 s. The constructed Rib Fracture Detection System has a comparable performance with the experienced radiologist and is readily available to automatically detect rib fracture in the clinical setting with high efficacy, which could reduce diagnosis time and radiologists’ workload in the clinical practice.


2020 ◽  
Vol 498 (4) ◽  
pp. 5620-5628
Author(s):  
Y Su ◽  
Y Zhang ◽  
G Liang ◽  
J A ZuHone ◽  
D J Barnes ◽  
...  

ABSTRACT The origin of the diverse population of galaxy clusters remains an unexplained aspect of large-scale structure formation and cluster evolution. We present a novel method of using X-ray images to identify cool core (CC), weak cool core (WCC), and non-cool core (NCC) clusters of galaxies that are defined by their central cooling times. We employ a convolutional neural network, ResNet-18, which is commonly used for image analysis, to classify clusters. We produce mock Chandra X-ray observations for a sample of 318 massive clusters drawn from the IllustrisTNG simulations. The network is trained and tested with low-resolution mock Chandra images covering a central 1 Mpc square for the clusters in our sample. Without any spectral information, the deep learning algorithm is able to identify CC, WCC, and NCC clusters, achieving balanced accuracies (BAcc) of 92 per cent, 81 per cent, and 83 per cent, respectively. The performance is superior to classification by conventional methods using central gas densities, with an average ${\rm BAcc}=81{{\ \rm per\ cent}}$, or surface brightness concentrations, giving ${\rm BAcc}=73{{\ \rm per\ cent}}$. We use class activation mapping to localize discriminative regions for the classification decision. From this analysis, we observe that the network has utilized regions from cluster centres out to r ≈ 300 kpc and r ≈ 500 kpc to identify CC and NCC clusters, respectively. It may have recognized features in the intracluster medium that are associated with AGN feedback and disruptive major mergers.


Author(s):  
Kanika Gautam ◽  
Sunil Kumar Jangir ◽  
Manish Kumar ◽  
Jay Sharma

Malaria is a disease caused when a female Anopheles mosquito bites. There are over 200 million cases recorded per year with more than 400,000 deaths. Current methods of diagnosis are effective; however, they work on technologies that do not produce higher accuracy results. Henceforth, to improve the prediction rate of the disease, modern technologies need to be performed for obtain accurate results. Deep learning algorithms are developed to detect, learn, and determine the containing parasites from the red blood smears. This chapter shows the implementation of a deep learning algorithm to identify the malaria parasites with higher accuracy.


Author(s):  
Dr. Prakash Prasad ◽  
Mukul Shende ◽  
Mayur Karemore ◽  
Lucky Khobragade ◽  
Amit Dravyakar ◽  
...  

The new pandemic of (Coronavirus Disease-2019) COVID-19 continues to spread worldwide. Every potential sector is experiencing a decline in growth. (World Health Organization) WHO suggests that Wearing Face Mask can reduce the impact of COVID-19. So, This Paper Proposed a system that controls the growth of COVID-19 by finding individuals who don't wear masks in populated areas like malls, markets where all public places are under surveillance with closed-circuit television cameras (CCTV). When a person without a mask is found, the corresponding authority is informed by the CCTV network. And it can calculate the number of people that do not wear the mask and emit an audible signal to inform the authority. A deep learning module is trained on a dataset composed of images of people wearing different types of masks and people without masks collected from various sources. It also contains some confusing images that help the model to achieve greater precision than other models. This model will use the dataset to build a COVID-19 face mask detector with computer vision using Computer Vision. This approach allowed extracting even the details from the pixels


Businessesare constantly overhauling their existing infrastructure and processes to be more efficient, safe, and usable for employees, customers, and the community. With the ongoing pandemic, it's even more important to have advanced applications and services in place to mitigate risk. For public safety and health, authorities are recommending the use of face masks and coverings to control the spread of Coronovirus. The COVID-19 pandemic is devastation to themankind irrespective of caste, creed, gender, and religion. Using a face mask can undoubtedly help in managing the spread of the virus. COVID-19 face mask detector uses deep learning techniques to successfully test whether a person is wearing a face mask or not. Using a deep learning method called Convolutional Neural Network, got an accuracy of 98.6 %. It can work with still images and also works with a live video stream. Cases in which the mask is improperly worn are when the nose and mouth are partially covered is considered as the mask is not worn. Our face mask identifier is the least complex in structure and gives quick results and hence can be used in CCTV footage to detect whether a person is wearing a mask perfectly so that he does not pose any danger to others. Mass screening is possible and hence can be used in crowded places like railway stations, bus stops, markets, streets, mall entrances, schools, colleges, etc. By monitoring the placement of the face mask on the face, we can make sure that an individual wears it the right way and helps to curb the scope of the virus


Electronics ◽  
2021 ◽  
Vol 10 (20) ◽  
pp. 2557
Author(s):  
Ben Zierdt ◽  
Taichu Shi ◽  
Thomas DeGroat ◽  
Sam Furman ◽  
Nicholas Papas ◽  
...  

Ultraviolet disinfection has been proven to be effective for surface sanitation. Traditional ultraviolet disinfection systems generate omnidirectional radiation, which introduces safety concerns regarding human exposure. Large scale disinfection must be performed without humans present, which limits the time efficiency of disinfection. We propose and experimentally demonstrate a targeted ultraviolet disinfection system using a combination of robotics, lasers, and deep learning. The system uses a laser-galvo and a camera mounted on a two-axis gimbal running a custom deep learning algorithm. This allows ultraviolet radiation to be applied to any surface in the room where it is mounted, and the algorithm ensures that the laser targets the desired surfaces avoids others such as humans. Both the laser-galvo and the deep learning algorithm were tested for targeted disinfection.


Sign in / Sign up

Export Citation Format

Share Document