Al/Al2O3 Nanocomposite Produced by ECAP

2013 ◽  
Vol 762 ◽  
pp. 457-464 ◽  
Author(s):  
Riccardo Casati ◽  
Matteo Amadio ◽  
Carlo Alberto Biffi ◽  
David Dellasega ◽  
Ausonio Tuissi ◽  
...  

Metal matrix nanocomposites have been produced by powder metallurgy route. Al and nanoAl2O3powders were grinded through high energy ball milling. Then, the composite powders were sintered by Equal Channel Angular Pressing (ECAP). 12 ECAP passes were carried out in order to improve the dispersion of the hard particles. SEM analysis was performed to investigate the distribution of the ceramic nanoparticles within the matrix. Hardness tests were executed to evaluate the mechanical behavior of the nanocomposites. Finally, mechanical strength values obtained by numerical models were compared with those estimated from hardness measurements. High energy ball milling followed by ECAP process revealed to be a suitable route for the production of metal matrix composites reinforced with well dispersed nanoparticles.

2015 ◽  
Vol 1775 ◽  
pp. 7-12 ◽  
Author(s):  
Anara Molkenova ◽  
Izumi Taniguchi

ABSTRACTSpray pyrolysis has been widely used to prepare homogeneous and uniform ceramic powders with high purity. In this study, we are proposing ultrasonic spray pyrolysis followed by heat treatment to produce SiOx/C composite powders, where sucrose was used as a carbon source. Furthermore, high energy ball milling of the as-prepared powders in the presence of acetylene black was conducted to activate its electrochemical properties by reducing the particle size and improving the functionalization of the SiOx composite particles. SiOx/C nanocomposite finally obtained at a sucrous concentration of 0.1 mol L-1 showed superior electrochemical properties, and the SiOx/C nanocomposite electrode delivered the first discharge and charge capacities of 1252 and 819 mAh g-1, respectively, with an initial columbic efficiency of 65% at a current density of 50 mAh g-1 in the potential range from 0.01 to 3 V versus Li/Li+.


2016 ◽  
Vol 869 ◽  
pp. 277-282
Author(s):  
Moisés Luiz Parucker ◽  
César Edil da Costa ◽  
Viviane Lilian Soethe

Solid lubricants have had good acceptance when used in problem areas where the conventional lubricants cannot be applied: under extreme temperatures, high charges and in chemically reactive environments. In case of materials manufactured by powder metallurgy, particles of solid lubricants powders can be easily incorporated to the matrix volume at the mixing stage. In operation, this kind of material provides a thin layer of lubricant that prevents direct contact between the surfaces. The present study aimed at incorporating particles of second phase lubricant (h-BN) into a matrix of nickel by high-energy ball milling in order to obtain a self-lubricating composite with homogeneous phase distribution of lubricant in the matrix. Mixtures with 10 vol.% of h-BN varying the milling time of 5, 10, 15 and 20 hours and their relationship ball/powder of 20:1 were performed. The effect of milling time on the morphology and microstructure of the powders was studied by X-ray diffraction, SEM and EDS. The composite powders showed reduction in average particle size with increasing milling time and the milling higher than 5 hours resulted in equiaxial particles and the formation of nickel boride.


Author(s):  
Enrique Martínez-Franco ◽  
Ming Li ◽  
Ricardo Cuenca Álvarez ◽  
Jesús González Hernández ◽  
Chao Ma ◽  
...  

Metal matrix nanocomposites (MMNCs) are anticipated to offer significantly better performance than existing superalloys. Nickel/alumina nanocomposite samples were fabricated with a powder metallurgy method, combining high-energy ball milling (HEBM) and spark plasma sintering (SPS). The objective of this research is to determine the effect of alumina nanoparticle fraction and HEBM parameters on the powder preparation and sintering processes, and resultant microstructure and properties. Nickel-based powders containing various fractions (1, 5 and 15 vol.%) alumina nanoparticles were prepared by HEBM. The initial particle sizes were 44 μm and 50 nm for nickel and alumina, respectively. The milling process was conducted by starting with mixing at 250 rpm for 5 min, followed by cycling operation at high and low speeds (1200 rpm for 4 min and 150 rpm for 1 min). Samples at different milling times (30, 60, 90 and 120 min) of each composition were obtained. Scanning electron microscopy (SEM) was used to evaluate the dispersion of nanoparticles in the powders at different milling times. SPS technique was used for consolidation of the prepared powders. SEM images showed that alumina nanoparticles are homogeneously dispersed in the metal matrix in the sample containing 15 vol.% alumina. Hardness measurements in cross sections of SPSed samples showed higher values for Ni/Al2O3 MMNC compared to pure Ni.


2013 ◽  
Vol 749 ◽  
pp. 157-160
Author(s):  
Hui Qin Cao ◽  
Zhi Meng Guo ◽  
Wei Wei Yang ◽  
Ji Luo

The fine and homogenous distribution of the SiC particles in Al metal matrix is basic prerequisite for improving the properties of the SiCp/Al composites. In this paper, the effects of high energy ball milling and ordinary ball milling on the spatial distribution of reinforcement of the SiCp/Al composites have been investigated. The result showed that high energy ball milling is the most effective method to get homogeneous distribution of SiC particles in Al matrix. There were many clusters of SiC particles in the composites fabricated by ordinary ball milling.


10.30544/629 ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 1-13
Author(s):  
Jovana Ruzic ◽  
Marko Simić ◽  
Nikolay Stoimenov ◽  
Dušan Božić ◽  
Jelena Stašić

Metal matrix composites (MMCs) belong to a group of modern materials owing to their excellent technological, mechanical, and physical properties such as excellent wear and corrosion resistance, high electrical and thermal conductivity, improved strength and hardness. Final properties of MMCs are affected equally by all steps of its manufacturing process. It is shown that by using adequate process parameters to obtain starting materials (reaching the specific size, shape, and reactivity) the control of volume fraction and distribution of reinforcements within the matrix can be achieved. For this purpose, mechanical alloying has been appointed as a good approach. MMCs can be produced using powder metallurgy, ingot metallurgy, and additive manufacturing techniques. Combining high-energy ball milling with these techniques enables the design of an innovative processing route for MMCs manufacturing. Mechanochemical process (achieved using high-energy ball milling) was employed in three manufacturing procedures: hot pressing, compocasting, and laser melting/sintering for obtaining of the suitable powder. These production routes for MMCs manufacturing were the subject of this work. The aim of MMCs design is to establish an optimal combination of production techniques merged into the cost-effective fabrication route for obtaining MMCs with required properties.


2011 ◽  
Vol 319-320 ◽  
pp. 61-63 ◽  
Author(s):  
Xiu Yan Guo ◽  
Guo Jin Ma ◽  
Shi Kun Xie ◽  
Rong Xi Yi ◽  
Zhi Gao

Cu-4% mixed-powder consisting of rough copper powder and graphite powder was separately mechanical alloyed by high-energy ball milling. The phases and micrograph of these powders were determined by X-ray diffraction and scanning electron microscopy (SEM). The results show an increase in the lattice parameter of copper with milling times, up to a saturation value of about 24h; There was an absence of graphite reflections from X-ray diffractograms after longer milling times.


Sign in / Sign up

Export Citation Format

Share Document