scholarly journals Mental Communication of Internal Speech with Communicative Associative Robot via Spectral Neurointerface

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Evgeniy Bryndin

Thought communications with an associative-communicative robot are carried out through the spectral neurointerface of internal speech. Internal speech is an energy physiological process. Internal speech is vibration from the mental vibration of thought. Mental vibration of thought is a process in the mental ethereal field. The vibrations of thoughts are reflected and observed by the mind in the form of semantic sensual images. Vibrations of semantic sensual images generate vibrations of internal speech action (internal speech) in the form of language communicative and associative stereotypes which are perceived by a touch zone of a brain of Wernicke. Internal speech is a linguistic mental vibration, It is felt and becomes internally audible and drawn to attention. The perception of vibrations of internal speech is carried out through energy channels, such as the internal posterior median canal of the spine. The spectral neurointerface perceives these vibrations. Neocortex makes us a reasonable person - allows us to think and talk. The spectral neurointerface is based on the principles of biosensors, bioenergy detectors, spectral analyzers and electrocorticography for neuroimaging parts of the brain that record vibrations of internal speech, such as the lower frontal gyrus, the upper and middle temporal gyrus, the medial prefrontal cortex, the hind parts of the wedge and precline and the dark temporal region, including the posterior Internal speech activity is associated with the semantic memory of the neocortex.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Mi Li ◽  
Hongpei Xu ◽  
Shengfu Lu

Background. In the past, studies on the lateralization of the left and right hemispheres of the brain suggested that depression is dominated by the right hemisphere of the brain, but the neural basis of this theory remains unclear. Method. Functional magnetic resonance imaging of the brain was performed in 22 depressive patients and 15 healthy controls. The differences in the mean values of the regional homogeneity (ReHo) of two groups were compared, and the low-frequency amplitudes of these differential brain regions were compared. Results. The results show that compared with healthy subjects, depressive patients had increased ReHo values in the right superior temporal gyrus, right middle temporal gyrus, left inferior temporal gyrus, left middle temporal gyrus, right middle frontal gyrus, triangular part of the right inferior frontal gyrus, orbital part of the right inferior frontal gyrus, right superior occipital gyrus, right middle occipital gyrus, bilateral anterior cingulate, and paracingulate gyri; reduced ReHo values were seen in the right fusiform gyrus, left middle occipital gyrus, left lingual gyrus, and left inferior parietal except in the supramarginal and angular gyri. Conclusions. The results show that regional homogeneity mainly occurs in the right brain, and the overall performance of the brain is such that right hemisphere synchronization is enhanced while left hemisphere synchronization is weakened. ReHo abnormalities in the resting state can predict abnormalities in individual neurological activities that reflect changes in the structure and function of the brain; abnormalities shown with this indicator are the neuronal basis for the phenomenon that the right hemisphere of the brain has a dominant effect on depression.


1999 ◽  
Author(s):  
Laura Sanchez-Huerta ◽  
Adan Hernandez ◽  
Griselda Ayala ◽  
Javier Marroquin ◽  
Adriana B. Silva ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Jia Tuo ◽  
Wei He ◽  
Shuai Yang ◽  
Lihui Liu ◽  
Xiaojuan Liu ◽  
...  

Purpose: Previous studies have found that there are significant changes in functional network properties for patients with moderate to severe carotid artery stenosis. Our study aimed to explore the topology properties of brain functional network in asymptomatic patients with carotid plaque without significant stenosis.Methods: A total of 61 asymptomatic patients with carotid plaque (mean age 61.79 ± 7.35 years) and 25 healthy control subjects (HC; 58.12 ± 6.79 years) were recruited. General data collection, carotid ultrasound examination and resting state functional magnetic resonance imaging were performed on all subjects. Graph-theory was applied to examine the differences in the brain functional network topological properties between two groups.Results: In the plaque group, Eloc(P = 0.03), γ (P = 0.01), and σ (P = 0.01) were significantly higher than in the HC group. The degree centrality of left middle frontal gyrus and the nodal efficiency of left middle frontal gyrus and right inferior parietal angular gyrus were significantly higher in the plaque group than in HC. The degree centrality and betweenness centrality of right middle temporal gyrus, as well as the nodal efficiency of right middle temporal gyrus, were significantly lower in the plaque group than in HC.Conclusions: The brain functional networks of patients with carotid plaques differ from those of healthy controls. Asymptomatic patients with carotid plaques exhibit increased local and global connectivity, which may reflect subtle reorganizations in response to early brain damage.


2021 ◽  
Author(s):  
Mengyao Zheng ◽  
Jinghong Xu ◽  
Les Keniston ◽  
Jing Wu ◽  
Song Chang ◽  
...  

Abstract Cross-modal interaction (CMI) could significantly influence the perceptional or decision-making process in many circumstances. However, it remains poorly understood what integrative strategies are employed by the brain to deal with different task contexts. To explore it, we examined neural activities of the medial prefrontal cortex (mPFC) of rats performing cue-guided two-alternative forced-choice tasks. In a task requiring rats to discriminate stimuli based on auditory cue, the simultaneous presentation of an uninformative visual cue substantially strengthened mPFC neurons' capability of auditory discrimination mainly through enhancing the response to the preferred cue. Doing this also increased the number of neurons revealing a cue preference. If the task was changed slightly and a visual cue, like the auditory, denoted a specific behavioral direction, mPFC neurons frequently showed a different CMI pattern with an effect of cross-modal enhancement best evoked in information-congruent multisensory trials. In a choice free task, however, the majority of neurons failed to show a cross-modal enhancement effect and cue preference. These results indicate that CMI at the neuronal level is context-dependent in a way that differs from what has been shown in previous studies.


2019 ◽  
Author(s):  
Marlieke T.R. van Kesteren ◽  
Paul Rignanese ◽  
Pierre G. Gianferrara ◽  
Lydia Krabbendam ◽  
Martijn Meeter

AbstractBuilding consistent knowledge schemas that organize information and guide future learning is of great importance in everyday life. Such knowledge building is suggested to occur through reinstatement of prior knowledge during new learning in stimulus-specific brain regions. This process is proposed to yield integration of new with old memories, supported by the medial prefrontal cortex (mPFC) and medial temporal lobe (MTL). Possibly as a consequence, congruency of new information with prior knowledge is known to enhance subsequent memory. Yet, it is unknown how reactivation and congruency interact to optimize memory integration processes that lead to knowledge schemas. To investigate this question, we here used an adapted AB-AC inference paradigm in combination with functional Magnetic Resonance Imaging (fMRI). Participants first studied an AB-association followed by an AC-association, so B (a scene) and C (an object) were indirectly linked through their common association with A (an unknown pseudoword). BC-associations were either congruent or incongruent with prior knowledge (e.g. a bathduck or a hammer in a bathroom), and participants were asked to report subjective reactivation strength for B while learning AC. Behaviorally, both the congruency and reactivation measures enhanced memory integration. In the brain, these behavioral effects related to univariate and multivariate parametric effects of congruency and reactivation on activity patterns in the MTL, mPFC, and Parahippocampal Place Area (PPA). Moreover, mPFC exhibited larger connectivity with the PPA for more congruent associations. These outcomes provide insights into the neural mechanisms underlying memory integration enhancement, which can be important for educational learning.Significance statementHow does our brain build knowledge through integrating information that is learned at different periods in time? This question is important in everyday learning situations such as educational settings. Using an inference paradigm, we here set out to investigate how congruency with, and active reactivation of previously learned information affects memory integration processes in the brain. Both these factors were found to relate to activity in memory-related regions such as the medial prefrontal cortex (mPFC) and the hippocampus. Moreover, activity in the parahippocampal place area (PPA), assumed to reflect reinstatement of the previously learned associate, was found to predict subjective reactivation strength. These results show how we can moderate memory integration processes to enhance subsequent knowledge building.


2021 ◽  
Author(s):  
John Philippe Paulus ◽  
Carlo Vignali ◽  
Marc N Coutanche

Associative inference, the process of drawing novel links between existing knowledge to rapidly integrate associated information, is supported by the hippocampus and neocortex. Within the neocortex, the medial prefrontal cortex (mPFC) has been implicated in the rapid cortical learning of new information that is congruent with an existing framework of knowledge, or schema. How the brain integrates associations to form inferences, specifically how inferences are represented, is not well understood. In this study, we investigate how the brain uses schemas to facilitate memory integration in an associative inference paradigm (A-B-C-D). We conducted two event-related fMRI experiments in which participants retrieved previously learned direct (AB, BC, CD) and inferred (AC, AD) associations between word pairs for items that are schema congruent or incongruent. Additionally, we investigated how two factors known to affect memory, a delay with sleep, and reward, modulate the neural integration of associations within, and between, schema. Schema congruency was found to benefit the integration of associates, but only when retrieval immediately follows learning. RSA revealed that neural patterns of inferred pairs (AC) in the PHc, mPFC, and posHPC were more similar to their constituents (AB and BC) when the items were schema congruent, suggesting that schema facilitates the assimilation of paired items into a single inferred unit containing all associated elements. Furthermore, a delay with sleep, but not reward, impacted the assimilation of inferred pairs. Our findings reveal that the neural representations of overlapping associations are integrated into novel representations through the support of memory schema.


2021 ◽  
Vol 14 ◽  
Author(s):  
Jun Fan ◽  
Qiu-Ling Zhong ◽  
Ran Mo ◽  
Cheng-Lin Lu ◽  
Jing Ren ◽  
...  

The medial prefrontal cortex (mPFC), a key part of the brain networks that are closely related to the regulation of behavior, acts as a key regulator in emotion, social cognition, and decision making. Astrocytes are the majority cell type of glial cells, which play a significant role in a number of processes and establish a suitable environment for the functioning of neurons, including the brain energy metabolism. Astrocyte’s dysfunction in the mPFC has been implicated in various neuropsychiatric disorders. Glucose is a major energy source in the brain. In glucose metabolism, part of glucose is used to convert UDP-GlcNAc as a donor molecule for O-GlcNAcylation, which is controlled by a group of enzymes, O-GlcNAc transferase enzyme (OGT), and O-GlcNAcase (OGA). However, the role of O-GlcNAcylation in astrocytes is almost completely unknown. Our research showed that astrocytic OGT could influence the expression of proteins in the mPFC. Most of these altered proteins participate in metabolic processes, transferase activity, and biosynthetic processes. GFAP, an astrocyte maker, was increased after OGT deletion. These results provide a framework for further study on the role of astrocytic OGT/O-GlcNAcylation in the mPFC.


2009 ◽  
Vol 21 (8) ◽  
pp. 1560-1570 ◽  
Author(s):  
Susanne Quadflieg ◽  
David J. Turk ◽  
Gordon D. Waiter ◽  
Jason P. Mitchell ◽  
Adrianna C. Jenkins ◽  
...  

Judging people on the basis of cultural stereotypes is a ubiquitous facet of daily life, yet little is known about how this fundamental inferential strategy is implemented in the brain. Using fMRI, we measured neural activity while participants made judgments about the likely actor (i.e., person-focus) and location (i.e., place-focus) of a series of activities, some of which were associated with prevailing gender stereotypes. Results revealed that stereotyping was underpinned by activity in areas associated with evaluative processing (e.g., ventral medial prefrontal cortex, amygdala) and the representation of action knowledge (e.g., supramarginal gyrus, middle temporal gyrus). In addition, activity accompanying stereotypic judgments was correlated with the strength of participants' explicit and implicit gender stereotypes. These findings elucidate how stereotyping fits within the neuroscience of person understanding.


Author(s):  
Sofiia Yefremova ◽  

This article discusses the process of creating a software application that predicts Alzheimer's disease based on gene expression data in healthy and sick patients. The object of the study is the expression samples of genes taken from the study, which used the side of the middle temporal gyrus of the brain of frozen samples.


NeuroImage ◽  
2012 ◽  
Vol 62 (1) ◽  
pp. 102-112 ◽  
Author(s):  
Claudia Civai ◽  
Cristiano Crescentini ◽  
Aldo Rustichini ◽  
Raffaella Ida Rumiati

Sign in / Sign up

Export Citation Format

Share Document