scholarly journals Main Characteristics of Dust Storm sand Their Radiative Impacts: With a Focuson Tajikistan

Author(s):  
Sabur F. Abdullaev ◽  
Irina. N. Sokolik

Dust storms are commonly occurring phenomena in Tajikistan. The known aridity of the region is a major factor in promoting numerous dust storms. They have many diverse impacts on the environment and the climate of the region. The classification of dust storms and synoptic conditions related to their formation in Central Asia are discussed in the content of their diverse impact. We address dust optical properties that are representative of the region. Dust storms significantly reduce visibly and pose a human health threads. They also cause a significant impact on the radiative regime. As a result, dust storms may cause a decrease in temperature during daytime of up to 16 о С and an increase in temperature during night time from up to 7 о С compared to a clear day. 

1952 ◽  
Vol 33 (6) ◽  
pp. 240-243 ◽  
Author(s):  
G. Frederick Warn

This paper summarizes some of the weather conditions which cause blowing dust in the Southern High Plains of Texas. These conditions include diurnal winds, whirlwinds and thunderstorms. A tentative classification of dust storms in this area is given in table form. The terms dust lift, dust swath, and dust ring are introduced.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 113
Author(s):  
Aishajiang Aili ◽  
Hailiang Xu ◽  
Tursun Kasim ◽  
Abudumijiti Abulikemu

The Taklimakan Desert in Northwest China is the major source of dust storms in China. The northeast edge of this desert is a typical arid area which houses a fragile oasis eco-environment. Frequent dust storms cause harmful effects on the oasis ecosystem and negative impacts on agriculture, transportation, and human health. In this study, the major source region, transport pathway, and the potential contribution of dust storms to particulate air pollution were identified by using both trajectory analysis and monitoring data. To assess the source regions of dust storms, 48 h backward trajectories of air masses arriving at the Bugur (Luntai) County, which is located at the northeast edge of Taklimakan Desert, China on the dusty season (spring) and non-dusty month (August, representing non-dusty season) in the period of 1999–2013, were determined using Hybrid Single Particle Lagrangian Integrated Trajectory model version 4 (HYSPLIT 4). The trajectories were categorized by k-means clustering into 5 clusters (1a–5a) in the dusty season and 2 clusters (1b and 2b) in the non-dusty season, which show distinct features in terms of the trajectory origins and the entry direction to the site. Daily levels of three air pollutants measured at a station located in Bugur County were analyzed by using Potential Source Contribution Function (PSCF) for each air mass cluster in dusty season. The results showed that TSP is the major pollutant, with an average concentration of 612 µg/m3, as compared to SO2 (23 µg/m3) and NO2 (32 µg/m3) in the dusty season. All pollutants were increased with the dust weather intensity, i.e., from suspended dust to dust storms. High levels of SO2 and NO2 were mostly associated with cluster 1a and cluster 5a which had trajectories passing over the anthropogenic source regions, while high TSP was mainly observed in cluster 4a, which has a longer pathway over the shifting sand desert area. Thus, on strong dust storm days, not only higher TSP but also higher SO2 and NO2 levels were observed as compared to normal days. The results of this study could be useful to forecast the potential occurrence of dust storms based on meteorological data. Research focusing on this dust-storm-prone region will help to understand the possible causes for the changes in the dust storm frequency and intensity, which can provide the basis for mitigation of the negative effects on human health and the environment.


2021 ◽  
Vol 53 (5) ◽  
pp. 453-475
Author(s):  
C Ticleanu

Typical home lighting practice is mainly centred on visual aspects to enable safe movement between spaces, flexibility in multiuse spaces, a sense of aesthetics and energy efficiency. Whilst lighting impacts on the health of residents have not received similar consideration, this area is gaining increasing interest. This is even more important and actual in the context of the recent pandemic where people have been working or studying from home. A combination of bright daytime light and night-time darkness is essential for circadian entrainment and maintenance of a regular daily sleep–wake cycle, whereas exposure to light at night can negatively impact circadian rhythms and sleep patterns and ultimately lead to potential health problems. Additionally, lighting also has the potential to affect health through associated effects such as flicker, glare, optical hazards or electromagnetic fields. This article discusses the main areas of concern related to home lighting and outlines general recommendations to limit detrimental effects and contribute to good health.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 141
Author(s):  
Emilie Aragnou ◽  
Sean Watt ◽  
Hiep Nguyen Duc ◽  
Cassandra Cheeseman ◽  
Matthew Riley ◽  
...  

Dust storms originating from Central Australia and western New South Wales frequently cause high particle concentrations at many sites across New South Wales, both inland and along the coast. This study focussed on a dust storm event in February 2019 which affected air quality across the state as detected at many ambient monitoring stations in the Department of Planning, Industry and Environment (DPIE) air quality monitoring network. The WRF-Chem (Weather Research and Forecast Model—Chemistry) model is used to study the formation, dispersion and transport of dust across the state of New South Wales (NSW, Australia). Wildfires also happened in northern NSW at the same time of the dust storm in February 2019, and their emissions are taken into account in the WRF-Chem model by using Fire Inventory from NCAR (FINN) as emission input. The model performance is evaluated and is shown to predict fairly accurate the PM2.5 and PM10 concentration as compared to observation. The predicted PM2.5 concentration over New South Wales during 5 days from 11 to 15 February 2019 is then used to estimate the impact of the February 2019 dust storm event on three health endpoints, namely mortality, respiratory and cardiac disease hospitalisation rates. The results show that even though as the daily average of PM2.5 over some parts of the state, especially in western and north western NSW near the centre of the dust storm and wild fires, are very high (over 900 µg/m3), the population exposure is low due to the sparse population. Generally, the health impact is similar in order of magnitude to that caused by biomass burning events from wildfires or from hazardous reduction burnings (HRBs) near populous centres such as in Sydney in May 2016. One notable difference is the higher respiratory disease hospitalisation for this dust event (161) compared to the fire event (24).


2010 ◽  
Vol 27 (3) ◽  
pp. 562-574 ◽  
Author(s):  
Jinyuan Xin ◽  
Wupeng Du ◽  
Yuesi Wang ◽  
Qingxian Gao ◽  
Zhanqing Li ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Behcet Al ◽  
Mustafa Bogan ◽  
Suat Zengin ◽  
Mustafa Sabak ◽  
Seval Kul ◽  
...  

Objective. This study was designed to investigate the effects of Desert Dust Storms and Climatological Factors on Mortality and Morbidity of Cardiovascular Diseases admitted to emergency department in Gaziantep. Method. Hospital records, obtained between September 01, 2009 and January 31, 2014, from four state hospitals in Gaziantep, Turkey, were compared to meteorological and climatological data. Statistical analysis was performed by Statistical Package for the Social Science (SPSS) for windows version 24.0. Results. 168,467 patients were included in this study. 83% of the patients had chest pain and 17% of patients had cardiac failure (CF). An increase in inpatient hospitalization due to CF was observed and corresponded to the duration of dust storms measured by number of days. However, there was no significant increase in emergency department (ED) presentations. There was no significant association of cardiac related mortality and coinciding presence of a dust storm or higher recorded temperature. The association of increases in temperature levels and the presence of dust storms with “acute coronary syndrome- (ACS-) related emergency service presentations, inpatient hospitalization, and mortality” were statistically significant. The relationship between the increase in PM10 levels due to causes unrelated to dust storms and the outpatient application, admission, and mortality due to heart failure was not significant. The increase in particle matter 10 (PM) levels due to causes outside the dust storm caused a significant increase in outpatient application, hospitalization, and mortality originated from ACS. Conclusion. Increased number of dust storms resulted in a higher prevalence of mortality due to ACS while mortality due to heart failure remained unchanged. Admission, hospitalization, and mortality due to chest pain both dependent and independent of ACS were increased by the presence of dust storms, PM10 elevation, and maximum temperature.


2021 ◽  
Author(s):  
Alex Innanen ◽  
Brittney Cooper ◽  
Charissa Campbell ◽  
Scott Guzewich ◽  
Jacob Kloos ◽  
...  

<p>1. INTRODUCTION</p><p>The Mars Science Laboratory (MSL) is located in Gale Crater (4.5°S, 137.4°E), and has been performing cloud observations for the entirety of its mission, since its landing in 2012 [eg. 1,2,3]. One such observation is the Phase Function Sky Survey (PFSS), developed by Cooper et al [3] and instituted in Mars Year (MY) 34 to determine the scattering phase function of Martian water-ice clouds. The clouds of interest form during the Aphelion Cloud Belt (ACB) season (L<sub>s</sub>=50°-150°), a period of time during which there is an increase in the formation of water-ice clouds around the Martian equator [4]. The PFSS observation was also performed during the MY 35 ACB season and the current MY 36 ACB season.</p><p>Following the MY 34 ACB season, Mars experienced a global dust storm which lasted from L<sub>s</sub>~188° to L<sub>s</sub>~250° of that Mars year [5]. Global dust storms are planet-encircling storms which occur every few Mars years and can significantly impact the atmosphere leading to increased dust aerosol sizes [6], an increase in middle atmosphere water vapour [7], and the formation of unseasonal water-ice clouds [8]. While the decrease in visibility during the global dust storm itself made cloud observation difficult, comparing the scattering phase function prior to and following the global dust storm can help to understand the long-term impacts of global dust storms on water-ice clouds.</p><p>2. METHODS</p><p>The PFSS consists of 9 cloud movies of three frames each, taken using MSL’s navigation cameras, at a variety of pointings in order to observe a large range of scattering angles. The goal of the PFSS is to characterise the scattering properties of water-ice clouds and to determine ice crystal geometry.  In each movie, clouds are identified using mean frame subtraction, and the phase function is computed using the formula derived by Cooper et al [3]. An average phase function can then be computed for the entirety of the ACB season.</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.eda718c85da062913791261/sdaolpUECMynit/1202CSPE&app=m&a=0&c=67584351a5c2fde95856e0760f04bbf3&ct=x&pn=gnp.elif&d=1" alt="Figure 1 – Temporal Distribution of Phase Function Sky Survey Observations for Mars Years 34 and 35" width="800" height="681"></p><p>Figure 1 shows the temporal distributions of PFSS observations taken during MYs 34 and 35. We aim to capture both morning and afternoon observations in order to study any diurnal variability in water-ice clouds.</p><p>3. RESULTS AND DISCUSSION</p><p>There were a total of 26 PFSS observations taken in MY 35 between L<sub>s</sub>~50°-160°, evenly distributed between AM and PM observations. Typically, times further from local noon (i.e. earlier in the morning or later in the afternoon) show stronger cloud features, and run less risk of being obscured by the presence of the sun. In all movies in which clouds are detected, a phase function can be calculated, and an average phase function determined for the whole ACB season.  </p><p>Future work will look at the water-ice cloud scattering properties for the MY 36 ACB season, allowing us to get more information about the interannual variability of the ACB and to further constrain the ice crystal habit. The PFSS observations will not only assist in our understanding of the long-term atmospheric impacts of global dust storms but also add to a more complete image of time-varying water-ice cloud properties.</p>


Sign in / Sign up

Export Citation Format

Share Document