scholarly journals A proposed method for encrypting and sending confidential data using polynomials

2021 ◽  
Vol 8 (3) ◽  
pp. 014-019
Author(s):  
Sana Ahmed Kadhim ◽  
Saad Abdual Azize abdual Rahman

With the improvements of cyberspace and communications, an essential problem was raised and that is how to secure the transmitted data and keep it confidential. Many techniques have been used for this purpose, some of them were broken but others were stayed immune against different attacks. Complexity of the used technique is one of the major reasons that kept it secure. To increase complexity, mathematics was used. In this paper, a method for encrypting and sending confidential data was proposed. The method depends on mathematical equations for encrypting data, sending and decrypting it. The method is complex, secure and workable.

2021 ◽  
Vol 8 (2) ◽  
pp. 082-087
Author(s):  
Sana Ahmed Kadhim ◽  
Saad Abdual Azize abdual Rahman

With the improvements of cyberspace and communications, an essential problem was raised and that is how to secure the transmitted data and keep it confidential. Many techniques have been used for this purpose, some of them were broken but others were stayed immune against different attacks. Complexity of the used technique is one of the major reasons that kept it secure. To increase complexity, mathematics was used. In this paper, a method for encrypting and sending confidential data was proposed. The method depends on mathematical equations for encrypting data, sending and decrypting it. The method is complex, secure and workable.


Author(s):  
C. Vannuffel ◽  
C. Schiller ◽  
J. P. Chevalier

Recently, interest has focused on the epitaxy of GaAs on Si as a promising material for electronic applications, potentially for integration of optoelectronic devices on silicon wafers. The essential problem concerns the 4% misfit between the two materials, and this must be accommodated by a network of interfacial dislocations with the lowest number of threading dislocations. It is thus important to understand the detailed mechanism of the formation of this network, in order to eventually reduce the dislocation density at the top of the layers.MOVPE growth is carried out on slightly misoriented, (3.5°) from (001) towards , Si substrates. Here we report on the effect of this misorientation on the interfacial defects, at a very early stage of growth. Only the first stage, of the well-known two step growth process, is thus considered. Previously, we showed that full substrate coverage occured for GaAs thicknesses of 5 nm in contrast to MBE growth, where substantially greater thicknesses are required.


2020 ◽  
pp. 59-63
Author(s):  
A.S. Bondarenko ◽  
A.S. Borovkov ◽  
I.M. Malay ◽  
V.A. Semyonov

The analysis of the current state of the reflection coefficient measurements in waveguides at millimeter waves is carried out. An approach for solving the problem of reproducing the reflection coefficient measurement scale is proposed. Mathematical equations, which are the basis of the reflection coefficient measurement equation are obtained. The method of determining the metrological performance of reflection coefficient unit’s reference standards is developed. The results of electrodynamic modeling and analytical calculations by the developed method are compared. It is shown that this method can be used for reproducing the reflection coefficient unit in the development of the State primary standard.


2015 ◽  
Vol 39 (2) ◽  
pp. 199-202
Author(s):  
Wojciech Batko ◽  
Renata Bal

Abstract The assessment of the uncertainty of measurement results, an essential problem in environmental acoustic investigations, is undertaken in the paper. An attention is drawn to the - usually omitted - problem of the verification of assumptions related to using the classic methods of the confidence intervals estimation, for the controlled measuring quantity. Especially the paper directs attention to the need of the verification of the assumption of the normal distribution of the measuring quantity set, being the base for the existing and binding procedures of the acoustic measurements assessment uncertainty. The essence of the undertaken problem concerns the binding legal and standard acts related to acoustic measurements and recommended in: 'Guide to the expression of uncertainty in measurement' (GUM) (OIML 1993), developed under the aegis of the International Bureau of Measures (BIPM). The model legitimacy of the hypothesis of the normal distribution of the measuring quantity set in acoustic measurements is discussed and supplemented by testing its likelihood on the environment acoustic results. The Jarque-Bery test based on skewness and flattening (curtosis) distribution measures was used for the analysis of results verifying the assumption. This test allows for the simultaneous analysis of the deviation from the normal distribution caused both by its skewness and flattening. The performed experiments concerned analyses of the distribution of sound levels: LD, LE, LN, LDWN, being the basic noise indicators in assessments of the environment acoustic hazards.


2007 ◽  
Vol 7 (2) ◽  
pp. 45-48 ◽  
Author(s):  
Steve Maddox

Robotica ◽  
2020 ◽  
pp. 1-18
Author(s):  
M. Garcia ◽  
P. Castillo ◽  
E. Campos ◽  
R. Lozano

SUMMARY A novel underwater vehicle configuration with an operating principle as the Sepiida animal is presented and developed in this paper. The mathematical equations describing the movements of the vehicle are obtained using the Newton–Euler approach. An analysis of the dynamic model is done for control purposes. A prototype and its embedded system are developed for validating analytically and experimentally the proposed mathematical representation. A real-time characterization of one mass is done to relate the pitch angle with the radio of displacement of the mass. In addition, first validation of the closed-loop system is done using a linear controller.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Fang Fang Zhao ◽  
Linh Chau ◽  
Anita Schuchardt

Abstract Background Many students solving quantitative problems in science struggle to apply mathematical instruction they have received to novel problems. The few students who succeed often draw on both their mathematical understanding of the equation and their scientific understanding of the phenomenon. Understanding the sensemaking opportunities provided during instruction is necessary to develop strategies for improving student outcomes. However, few studies have examined the types of sensemaking opportunities provided during instruction of mathematical equations in science classrooms and whether they are organized in ways that facilitate integration of mathematical and scientific understanding. This study uses a multiple case study approach to examine the sensemaking opportunities provided by four different instructors when teaching the same biological phenomenon, population growth. Two questions are addressed: (1) What types of sensemaking opportunities are provided by instructors, and (2) How are those sensemaking opportunities organized? The Sci-Math Sensemaking Framework, previously developed by the authors, was used to identify the types of sensemaking. Types and organization of sensemaking opportunities were compared across the four instructors. Results The instructors provided different opportunities for sensemaking of equations, even though they were covering the same scientific phenomenon. Sensemaking opportunities were organized in three ways, blended (previously described in studies of student problem solving as integration of mathematics and science resources), and two novel patterns, coordinated and adjacent. In coordinated sensemaking, two types of sensemaking in the same dimension (either mathematics or science) are explicitly connected. In adjacent sensemaking, two different sensemaking opportunities are provided within the same activity but not explicitly connected. Adjacent sensemaking was observed in three instructors’ lessons, but only two instructors provided opportunities for students to engage in blended sensemaking. Conclusions Instructors provide different types of sensemaking opportunities when teaching the same biological phenomenon, making different resources available to students. The organization of sensemaking also differed with only two instructors providing blended sensemaking opportunities. This result may explain why few students engage in the successful strategy of integrating mathematics and science resources when solving quantitative problems. Documentation of these instructional differences in types and organization of sensemaking provides guidance for future studies investigating the effect of instruction on student sensemaking.


Sign in / Sign up

Export Citation Format

Share Document