scholarly journals Effect of Irradiation process on mango

2021 ◽  
Vol 9 (2) ◽  
pp. 108-118
Author(s):  
Tanzila Sultana ◽  
Kazi M Maraz ◽  
Arwah Ahmed ◽  
Shamima Shultana ◽  
Ruhul A Khan

Mango (Mangifera indica L.) is one of the choicest tropical fruit of the world and rightly designated as "King" of all fruits. It is a nutritionally important fruit being a good source of vitamin A, B and C and minerals. Post-harvest losses in mangoes have been estimated in the range of 25 to 40% from harvesting to consumption stage. Improved practices and preservation have a great impact on retaining mango fruit quality and on the supply chain. Nowadays food irradiation process is an engrained technology for the preservation of foods and food products. Three different kinds of ionizing radiation are applicable for food irradiation processes (Gamma-rays which is emitted from the radio-isotopes Cobalt-60 and Caesium-137, or electron beams and X-rays). Food irradiation can be considered an evolving technique that is capable of increasing the shelf-life, deferring the ripening and senescence of fruits, and thwart of microorganism activity along with insect infestation. Irradiated food is save for human health. This review article is focusing on irradiation effects on mango and the adoption of improved practices by the farmer for export besides that of food safety.

Author(s):  
Nadia Prilliane Putri ◽  
Khalida Shabiba Nursyamsi ◽  
Yanico Hadi Prayogo ◽  
Dina Ragillia Sari ◽  
Eka Budiarti ◽  
...  

<p class="IsiAbstrakIndo"><span lang="EN-GB">Mango fruit (</span><em><span lang="EN-GB">Mangifera indica L.</span></em><span lang="EN-GB">) is the tropical fruit that grows easily in Indonesia with plenty varieties. This study aimed to determine the varieties of mango fruit and the most potent part of mango as antidiabetic agent through </span><span lang="EN-GB">α</span><span lang="EN-GB">-glucosidase inhibitory activities. Four types of mango fruit (</span><em><span lang="EN-GB">indramayu, manalagi, harum manis</span></em><span lang="EN-GB">, and </span><em><span lang="EN-GB">budiraja</span></em><span lang="EN-GB">) were used in this study. Each part of the mango fruit:peel, flesh, endosperm, and endocarp were extracted by maceration process with three different solvents (n-hexane, ethyl acetate (EtOAc), and ethanol (EtOH)). An ability of all 46 extracts in inhibiting the </span><span lang="EN-GB">α</span><span lang="EN-GB">-glucosidase at a concentration of 500 ppm were determined. Then 11 extracts with the high inhibition value were determined their IC50 (concentration to inhibit 50% activity) values. EtOAc extract of </span><em><span lang="EN-GB">manalagi</span></em><span lang="EN-GB">, </span><em><span lang="EN-GB">indramayu</span></em><span lang="EN-GB">, and </span><em><span lang="EN-GB">budi raja</span></em><span lang="EN-GB"> endosperm had the lowest IC50 value which was not statistically significantly different (at 95%) with EtOAc extract of </span><em><span lang="EN-GB">budi raja</span></em><span lang="EN-GB"> peel. The bioautographic Thin Layer Chromatogram showed that the most active band is characterized by white luminescence under UV 366 nm, yellow color under UV 254 and visible light. The band with Rf 0.93 from EtOAc endosperm extract of </span><em><span lang="EN-GB">indramayu</span></em><span lang="EN-GB"> and </span><em><span lang="EN-GB">manalagi</span></em><span lang="EN-GB"> and Rf 0.73 from EtOAc </span><em><span lang="EN-GB">budi raja</span></em><span lang="EN-GB"> peel extract are the most active band which predicted as a flavonoid. The result adds the value of the peel and seed of mango, as well as an alternative in blood sugar control, which is easy to obtain, relatively cheap, and liked by the community. </span></p>


food was presented by McLaughlin and collaborators (29). Glover’s review (30) is less detailed but more recent. Dosimetry for food irradiation processing has reached a high level of perfec­ tion. Many standards for this purpose have been issued by the American Society for Testing and Materials (31,32). The role of dosimetry in good radiation processing practice is described in the Recommended International Code of Practice for the Operation of Irradiation Facilities Used for the Treatment of Foods (see Appendix II) and in a series of Codes of Good Irradiation Practice issued by ICGFI (International Consultative Group on Food Irradiation) (see Appendix III). With some food items, such as whole eggs (33) and ground com (34), it may be possible to use the food itself as a dose meter. This will be discussed in more detail in Chapter 5. As mentioned earlier, electron beams, on the one hand, and gamma rays and x-rays, on the other hand, differ greatly in their ability to penetrate matter. This has important consequences for the dose distribution in the irradiated medium. Since many foods consist mostly of water, the penetration of radiation in water is shown in Figure 14. When an electron beam penetrates an aqueous medium the dose somewhat below the surface is higher than at the surface. This is due to the formation of secondary electrons which, because of their lower energy, are more effectively absorbed than the primary electrons. Also, scattering causes some secondary electrons to escape from the surface in the direction opposite to that of the beam of primary electrons. Thus a 10-MeV electron beam giving a dose of 10 kGy at the surface will deposit about 12.5 kGy at 2 cm below the surface. As more and more primary electrons lose their energy by interacting with water molecules, the absorbed dose decreases with increasing depth and at about 5 cm the limit of penetration is reached. In contrast, the dose delivered by gamma rays decreases continuously. The rate of decrease is faster with 137Cs gamma radiation than with 60Co gamma radiation. With x-rays it depends on the energy of the x-ray-producing electrons. For practical purposes the penetration of 5-MeV x-rays is comparable to that of 60Co gamma rays. Two-sided irradiation permits processing of thicker packages with more uni­ form dose distribution, as indicated in Figure 15. If the density of the irradiated medium is less than that of water, e.g., in fatty foods or in dehydrated or porous foods, the depth of penetration is correspondingly greater. The 10-MeV electron beam, which barely reaches a depth of 5 cm in water, will reach approximately 10 cm at a density of 0.5g/cm3. From Figures 14 and 15 it is clear that an absolutely uniform dose distribution cannot be obtained, even if a material of uniform density is irradiated. If dose

1995 ◽  
pp. 52-52

2020 ◽  
Vol 70 (4) ◽  
pp. 269-281
Author(s):  
Dulce María Soria-Lara ◽  
Sandra Neli Jiménez-García ◽  
José Enrique Botello-Álvarez ◽  
Rita Miranda-López

Mango is the second most commercialized tropical fruit in the world, and Mexico is the major exporter. In terms of mango production, Manila´s variety represents a quarter of the total mangoes production in Mexico. However, the changes that occur on the phenolic compounds during the Manila mango ripening process are unknown. Quantitative analysis of the major phenolic compounds was conducted at different maturity stages, using several spectrophotometric measurements and by high-performance liquid chromatography (HPLC). At the late ripening stage was observed the biggest content in pulp and peel of total phenols (577 and 10547 mg EAG /100 g), flavonoids (95.33 and 537 mg EQ/100 g), and antioxidant capacity by DPPH (25 and 347 mmol TE/100 g). Some bioactive compounds achieve their highest values at optimal consumption ripening. Although they diminish when the fruit reaches a senescence appearance. This is the first study to prove that mangiferin by itself shows a higher correlation in antioxidant capacity compared to other phenolic compounds in mango peel, and this suggest that phenolic compounds may have an important role in the postharvest antioxidant metabolism in Manila mango fruit. On the other hand, the results show that the peel compared to the pulp contains higher amounts of total phenols, flavonoids, gallic acid, mangiferin and antioxidant capacity, so its use as an ingredient in the preparation of functional food products is recommended. More studies are needed to go in-depth in the changes of the content of phytochemicals during the ripening process in the peel and pulp mango, which ones could be caused by the hormones responsible for ripening in the fruit, such as ethylene, and bioavailability of these compounds at different stages of maturation. El mango es la segunda fruta tropical más comercializada del mundo y México es el principal exportador. En términos de producción de mango, la variedad Manila representa una cuarta parte de la producción total de mangos en México. Sin embargo, se desconocen los cambios que ocurren en los compuestos fenólicos durante el proceso de maduración del mango Manila. El análisis cuantitativo de los principales compuestos fenólicos se realizó en diferentes etapas de madurez, utilizando varias medidas espectrofotométricas y mediante cromatografía líquida de alta resolución (HPLC). En la etapa de madurez tardía se observó el mayor contenido en pulpa y cáscara de fenoles totales (577 y 10547 mg EAG / 100 g), flavonoides (95.33 y 537 mg EQ / 100 g) y capacidad antioxidante por DPPH (25 y 347 mmol TE / 100 g). Algunos compuestos bioactivos alcanzan sus valores más altos en el punto de madurez óptima. Aunque disminuyen cuando el fruto adquiere una apariencia de senescencia. Este es el primer estudio que demuestra que la mangiferina por sí misma presenta una alta correlación con la capacidad antioxidante en comparación con otros compuestos fenólicos de la cáscara de mango, y esto sugiere que los compuestos fenólicos pueden tener un papel importante en el metabolismo antioxidante postcosecha en el mango Manila. Por otro lado, los resultados muestran que la cáscara comparada con la pulpa contiene mayores cantidades de fenoles totales, flavonoides, ácido gálico, mangiferin y capacidad antioxidante por DPPH, por lo que se recomienda su uso como ingrediente en la elaboración de productos alimenticios fucionales. Se necesitan más estudios para profundizar en los cambios del contenido de fitoquímicos durante el proceso de maduración en la cáscara y pulpa del mango, los cuáles podrían ser provocados por las hormonas responsables de la maduración en el fruto, como el etileno, y la biodisponibilidad de estos compuestos en diferentes etapas de maduración.


2008 ◽  
Vol 25 (No. 5) ◽  
pp. 231-242 ◽  
Author(s):  
J. Sádecká

Food irradiation is a process of exposing food to ionising radiation such as gamma rays emitted from the radioisotopes 60Co and 137Cs, or high energy electrons and X-rays produced by machine sources. The use of ionising radiation to destroy harmful biological organisms in food is considered a safe, well proven process that has found many applications. Depending on the absorbed dose of radiation, various effects can be achieved resulting in reduced storage losses, extended shelf life and/or improved microbiological and parasitological safety of foods. The most common irradiated commercial products are spices and vegetable seasonings. Spice irradiation is increasingly recognised as a method that reduces post-harvest losses, ensures hygienic quality, and facilitates trade with food products. This article reviews recent activities concerning food irradiation, focusing on the irradiation of spices and dried vegetable seasonings from the food safety aspect.


1998 ◽  
Vol 492 (1) ◽  
pp. 228-245 ◽  
Author(s):  
P. Hoflich ◽  
J. C. Wheeler ◽  
A. Khokhlov

1999 ◽  
Vol 511 (1) ◽  
pp. 204-207 ◽  
Author(s):  
Vincent Tatischeff ◽  
Reuven Ramaty
Keyword(s):  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ian S. E. Bally ◽  
◽  
Aureliano Bombarely ◽  
Alan H. Chambers ◽  
Yuval Cohen ◽  
...  

Abstract Background Mango, Mangifera indica L., an important tropical fruit crop, is grown for its sweet and aromatic fruits. Past improvement of this species has predominantly relied on chance seedlings derived from over 1000 cultivars in the Indian sub-continent with a large variation for fruit size, yield, biotic and abiotic stress resistance, and fruit quality among other traits. Historically, mango has been an orphan crop with very limited molecular information. Only recently have molecular and genomics-based analyses enabled the creation of linkage maps, transcriptomes, and diversity analysis of large collections. Additionally, the combined analysis of genomic and phenotypic information is poised to improve mango breeding efficiency. Results This study sequenced, de novo assembled, analyzed, and annotated the genome of the monoembryonic mango cultivar ‘Tommy Atkins’. The draft genome sequence was generated using NRGene de-novo Magic on high molecular weight DNA of ‘Tommy Atkins’, supplemented by 10X Genomics long read sequencing to improve the initial assembly. A hybrid population between ‘Tommy Atkins’ x ‘Kensington Pride’ was used to generate phased haplotype chromosomes and a highly resolved phased SNP map. The final ‘Tommy Atkins’ genome assembly was a consensus sequence that included 20 pseudomolecules representing the 20 chromosomes of mango and included ~ 86% of the ~ 439 Mb haploid mango genome. Skim sequencing identified ~ 3.3 M SNPs using the ‘Tommy Atkins’ x ‘Kensington Pride’ mapping population. Repeat masking identified 26,616 genes with a median length of 3348 bp. A whole genome duplication analysis revealed an ancestral 65 MYA polyploidization event shared with Anacardium occidentale. Two regions, one on LG4 and one on LG7 containing 28 candidate genes, were associated with the commercially important fruit size characteristic in the mapping population. Conclusions The availability of the complete ‘Tommy Atkins’ mango genome will aid global initiatives to study mango genetics.


Sign in / Sign up

Export Citation Format

Share Document