Five-year experience of using a new class of drugs for targeted preventive therapy of migraine

2021 ◽  
Vol 26 (3) ◽  
pp. 4-14
Author(s):  
A. V. Amelin ◽  
A. Yu. Sokolov ◽  
Yu. S. Vaganova

This article deals with new migraine therapy, monoclonal antibodies against calcitonin gene related peptide (CGRP) and its receptor. The review represents a brief discussion of CGRP biological eff ects in the peripheral and central nervous system, and the role of CGRP in the migraine pathogenesis. Data of systematic reviews of randomized clinical research about the effi cacy and safety of monoclonal antibodies against CGRP (fremanezumab, eptinezumab and galkanezumab) and its receptor (erenumab) in patients with episodic and chronic migraine are included and analyzed. The results of fi ve-year use of erenumab in clinical research and in real practice are discussed and compared.

1998 ◽  
Vol 274 (6) ◽  
pp. R1777-R1782 ◽  
Author(s):  
Thomas A. Lutz ◽  
Janine Althaus ◽  
Rinaldo Rossi ◽  
Erwin Scharrer

Abdominal vagal and splanchnic afferents play an important role in the control of food intake in that they transmit various satiety signals to the central nervous system. Inasmuch as previous studies have shown that the anorectic effect of intraperitoneally injected amylin was not abolished by subdiaphragmatic vagotomy, the aim of the present study was to elucidate the role of splanchnic afferents in mediating amylin’s anorectic effect after intraperitoneal injection. Rats were pretreated intraperitoneally with the neurotoxin capsaicin, which destroys primary sensory (vagal and splanchnic) afferents. Sham-treated rats served as control. Capsaicin-pretreatment had no influence on the anorectic effects of amylin (5 μg/kg) and the related peptide, calcitonin gene-related peptide (CGRP; 5 μg/kg), in 24-h food-deprived rats. Abolition of cholecystokinin’s (3 μg/kg) anorectic effect agrees with previous studies and confirmed the effectiveness of the capsaicin pretreatment. In conclusion, the anorectic effects of intraperitoneally injected amylin and CGRP are not mediated by capsaicin-sensitive primary sensory neurons. Both anorectic peptides are, therefore, most likely to act within the central nervous system. Previous studies suggest that the relevant receptors might be located in neurons of the area postrema-nucleus of the solitary tract region.


Author(s):  
James E. Crandall ◽  
Linda C. Hassinger ◽  
Gerald A. Schwarting

Cell surface glycoconjugates are considered to play important roles in cell-cell interactions in the developing central nervous system. We have previously described a group of monoclonal antibodies that recognize defined carbohydrate epitopes and reveal unique temporal and spatial patterns of immunoreactivity in the developing main and accessory olfactory systems in rats. Antibody CC2 reacts with complex α-galactosyl and α-fucosyl glycoproteins and glycolipids. Antibody CC1 reacts with terminal N-acetyl galactosamine residues of globoside-like glycolipids. Antibody 1B2 reacts with β-galactosyl glycolipids and glycoproteins. Our light microscopic data suggest that these antigens may be located on the surfaces of axons of the vomeronasal and olfactory nerves as well as on some of their target neurons in the main and accessory olfactory bulbs.


2020 ◽  
pp. 49-56
Author(s):  
T. Shirshova

Disorders of the musculoskeletal system in school-age children occupy 1-2 places in the structure of functional abnormalities. Cognitive impairment without organic damage to the central nervous system is detected in 30-56% of healthy school children. Along with the increase in the incidence rate, the demand for rehabilitation systems, which allow patients to return to normal life as soon as possible and maintain the motivation for the rehabilitation process, is also growing. Adaptation of rehabilitation techniques, ease of equipment management, availability of specially trained personnel and availability of technical support for complexes becomes important.


2018 ◽  
Vol 25 (26) ◽  
pp. 3096-3104 ◽  
Author(s):  
Daniele Mauro ◽  
Gaetano Barbagallo ◽  
Salvatore D`Angelo ◽  
Pasqualina Sannino ◽  
Saverio Naty ◽  
...  

In the last years, an increasing interest in molecular imaging has been raised by the extending potential of positron emission tomography [PET]. The role of PET imaging, originally confined to the oncology setting, is continuously extending thanks to the development of novel radiopharmaceutical and to the implementation of hybrid imaging techniques, where PET scans are combined with computed tomography [CT] or magnetic resonance imaging[MRI] in order to improve spatial resolution. Early preclinical studies suggested that 18F–FDG PET can detect neuroinflammation; new developing radiopharmaceuticals targeting more specifically inflammation-related molecules are moving in this direction. Neurological involvement is a distinct feature of various systemic autoimmune diseases, i.e. Systemic Lupus Erythematosus [SLE] or Behcet’s disease [BD]. Although MRI is largely considered the gold-standard imaging technique for the detection of Central Nervous System [CNS] involvement in these disorders. Several patients complain of neuropsychiatric symptoms [headache, epilepsy, anxiety or depression] in the absence of any significant MRI finding; in such patients the diagnosis relies mainly on clinical examination and often the role of the disease process versus iatrogenic or reactive forms is doubtful. The aim of this review is to explore the state-of-the-art for the role of PET imaging in CNS involvement in systemic rheumatic diseases. In addition, we explore the potential role of emerging radiopharmaceutical and their possible application in aiding the diagnosis of CNS involvement in systemic autoimmune diseases.


2019 ◽  
Vol 20 (7) ◽  
pp. 750-758 ◽  
Author(s):  
Yi Wu ◽  
Hengxun He ◽  
Zhibin Cheng ◽  
Yueyu Bai ◽  
Xi Ma

Obesity is one of the main challenges of public health in the 21st century. Obesity can induce a series of chronic metabolic diseases, such as diabetes, dyslipidemia, hypertension and nonalcoholic fatty liver, which seriously affect human health. Gut-brain axis, the two-direction pathway formed between enteric nervous system and central nervous system, plays a vital role in the occurrence and development of obesity. Gastrointestinal signals are projected through the gut-brain axis to nervous system, and respond to various gastrointestinal stimulation. The central nervous system regulates visceral activity through the gut-brain axis. Brain-gut peptides have important regulatory roles in the gut-brain axis. The brain-gut peptides of the gastrointestinal system and the nervous system regulate the gastrointestinal movement, feeling, secretion, absorption and other complex functions through endocrine, neurosecretion and paracrine to secrete peptides. Both neuropeptide Y and peptide YY belong to the pancreatic polypeptide family and are important brain-gut peptides. Neuropeptide Y and peptide YY have functions that are closely related to appetite regulation and obesity formation. This review describes the role of the gutbrain axis in regulating appetite and maintaining energy balance, and the functions of brain-gut peptides neuropeptide Y and peptide YY in obesity. The relationship between NPY and PYY and the interaction between the NPY-PYY signaling with the gut microbiota are also described in this review.


2018 ◽  
Vol 17 (4) ◽  
pp. 272-279 ◽  
Author(s):  
Yudan Zhu ◽  
Shuzhang Zhang ◽  
Yijun Feng ◽  
Qian Xiao ◽  
Jiwei Cheng ◽  
...  

Background & Objective: The large conductance calcium-activated potassium (BK) channel, extensively distributed in the central nervous system (CNS), is considered as a vital player in the pathogenesis of epilepsy, with evidence implicating derangement of K+ as well as regulating action potential shape and duration. However, unlike other channels implicated in epilepsy whose function in neurons could clearly be labeled “excitatory” or “inhibitory”, the unique physiological behavior of the BK channel allows it to both augment and decrease the excitability of neurons. Thus, the role of BK in epilepsy is controversial so far, and a growing area of intense investigation. Conclusion: Here, this review aims to highlight recent discoveries on the dichotomous role of BK channels in epilepsy, focusing on relevant BK-dependent pro- as well as antiepileptic pathways, and discuss the potential of BK specific modulators for the treatment of epilepsy.


Sign in / Sign up

Export Citation Format

Share Document