Smart Door for Handicapped People via Face Recognition and Voice Command Technique

2021 ◽  
Vol 39 (1B) ◽  
pp. 222-230
Author(s):  
Hana'a M. Salman ◽  
Rana T. Rasheed

Smart home indicates an application for different technological implementations, it could indicate any system which controls the door lock and several other devices. Facial identification which is an important section to achieve surveillance and safety, especially for handicapped people, can be considered as one of the ways that deal with biometrics and performed to identify facial images via utilizing fundamental features of the face. A Raspberry Pi-based face recognition system using conventional face detection and recognition techniques is going to be supplied, so the method in which image-built biometrics uses a Raspberry Pi is described. The aim of the paper here can be considered as transferring face recognition to a level in which the system can replace the utilizing of RF I-Cards and a password to access any system of security and making the system alive and protect the door from being open by hackers, especially by using the picture of an authorized person, we make the raspberry pi turn off and cannot turn on only by a command from the authorized person's mobile. The result of the presented proposal is a system that uses face recognition by utilizing OpenCV, Raspberry Pi, and it functions on an application of Android, and this system percentage becomes 99.63%. It should be cost-effective, of high performance, secured, and easy to use, which can be used in any smart home application.

2018 ◽  
Vol 7 (2.17) ◽  
pp. 85
Author(s):  
K Raju ◽  
Dr Y.Srinivasa Rao

Face Recognition is the ability to find and detect a person by their facial attributes. Face is a multi dimensional and thus requires a considerable measure of scientific calculations. Face recognition system is very useful and important for security, law authorization applications, client confirmation and so forth. Hence there is a need for an efficient and cost effective system. There are numerous techniques that are as of now proposed with low Recognition rate and high false alarm rate. Hence the major task of the research is to develop face recognition system with improved accuracy and improved recognition time. Our objective is to implementing Raspberry Pi based face recognition system using conventional face detection and recognition techniques such as A Haar cascade classifier is trained for detection and Local Binary Pattern (LBP) as a feature extraction technique. With the use of the Raspberry Pi kit, we go for influencing the framework with less cost and simple to use, with high performance. 


We Developed An Associate Approach To The Detection And Identification Of Human Faces And Describe A Operating, Near-Real-Time Face Recognition System That Tracks A Subject’s Face And So Acknowledges The Person By Comparison Characteristics Of The Face To Database. Our Approach Treats Face Recognition As A Two-Dimensional Recognition Downside, Taking Advantage Of The Very Fact That Faces Area Unit Area Unit Normally Upright And Therefore Is Also Delineate By A Small Set Of 2-D Characteristic Views. Face Pictures Are Projected Onto A Feature Area (“Face Space”) That Best Encodes The Variation Among Database Images. The Face Area Is Outlined By The “Eigenfaces”, That Area Unit The Eigenvectors Of The Set Of Faces; They Do Not Essentially Correspond To Isolated Options Like Eyes, Ears, And Noses. The Framework Provides The Flexibility To Be Told To Acknowledge New Faces


2020 ◽  
Vol 8 (3) ◽  
pp. 210-216
Author(s):  
Subiyanto Subiyanto ◽  
Dina Priliyana ◽  
Moh. Eki Riyadani ◽  
Nur Iksan ◽  
Hari Wibawanto

Genetic algorithm (GA) can improve the classification of the face recognition process in the principal component analysis (PCA). However, the accuracy of this algorithm for the smart home security system has not been further analyzed. This paper presents the accuracy of face recognition using PCA-GA for the smart home security system on Raspberry Pi. PCA was used as the face recognition algorithm, while GA to improve the classification performance of face image search. The PCA-GA algorithm was implemented on the Raspberry Pi. If an authorized person accesses the door of the house, the relay circuit will unlock the door. The accuracy of the system was compared to other face recognition algorithms, namely LBPH-GA and PCA. The results show that PCA-GA face recognition has an accuracy of 90 %, while PCA and LBPH-GA have 80 % and 90 %, respectively.


Author(s):  
Prof. Kalpana Malpe

Abstract: In recent years, the safety constitutes the foremost necessary section of the human life. At this point, the price is that the greatest issue. This technique is incredibly helpful for reducing the price of watching the movement from outside. During this paper, a period of time recognition system is planned which will equip for handling pictures terribly quickly. The most objective of this paper is to safeguard home, workplace by recognizing individuals. The face is that the foremost distinctivea part of human’s body. So, it will replicate several emotions of associate degree Expression. A few years past, humans were mistreatment the non-living things like good cards, plastic cards, PINS, tokens and keys for authentication, and to urge grant access in restricted areas like ISRO, National Aeronautics and Space Administration and DRDO. The most necessary options of the face image are Eyes, Nose and mouth. Face detection and recognition system is simpler, cheaper, a lot of accurate, process. The system under two categories one is face detection and face recognition. Throughout this case, among the paper, the Raspberry Pi single-board computer is also a heart of the embedded face recognition system. Keywords: Raspberry Pi, Face recognition system


2018 ◽  
Vol 7 (4.10) ◽  
pp. 24
Author(s):  
Parivazhagan. A ◽  
Dr. Brintha Therese.A

Face recognition is an effective tool in the biometric human recognition system. In this competitive world, several techniques and systems are emerging to satisfy the needs of the face recognition system’s performance. To obtain the high-performance ratio novel techniques are combined and created a new face recognition system. Spatial domain techniques like Gray averaging technique, Location averaging technique and Intensity’s position estimation technique are united with frequency domain technique like Discrete Cosine Transform. Intensity’s position estimation is a novel feature extraction and classification technique proposed in this work. Three standard face databases are tested using this system. Accuracy and runtime are major parameters used to validate the obtained results. The maximum accuracy rate of about 86% is obtained.     


Face recognition system is widely used for human identification particularly for security functions. The project deals with the look and implementation of secure automatic door unlockby using Raspberry Pi. Web camera for capturing the images from the video frame is operated and controlled by raspberry pi using Open CVPython library to train and store human faces for recognition. In this project we are using Raspberry Pi as face recognition module to capture human images and it will compare with stored data base images. If it matches with authorized user then system allows to supply power to electromagnetic lock to create magnetic field for unlocking the door. The need for facial recognition system that is fast and accurate is continuously increasing which can detect intruders and restricts all unauthorized users from highly secured areas and aids in minimizing human error. Face recognition is one of the most Secured System than the biometric pattern recognition technique which is used in a large spectrum of applications.The time and accuracy factor is considered about the major problem which specifies the performance of automatic face recognition in real time environments. Various solutions have been proposed using multicore systems. By considering present challenge, this provides the complete architectural design and proposes an analysis for a real time face recognition. Thus, the image extracted and allowed to match with the database pictures. If the images are matched, the door unlocks mechanically. the planning of the face recognition system exploitation Raspberry pi will create the smaller, lighter and with lower power consumption, therefore it's a lot of convenient than the PC-based face recognition system. Principle element analysis LBPH (Local Binary Pattern Histogram) algorithmic program is employed for the face recognition and detection method. Then acknowledgement are send through Zigbee module from transmitter to receiver. If image isn't detected in database then it'll ask for manual four digit pin for unlocking the door.The developed theme is affordable, fast, and extremely reliable and provides enough flexibility to suits any environment of various systems. Problem Statement:In theworld of emerging technology, security became an essential component in day to day life. Information theft, lack of security and violation of privacy etc. are the essential components which are needed to be protected. Using smart secure systems for door lock and unlocking became popular nowadays. This is system is being adapted by many countries and first grade countries such as USA, Japan etc., already makes use of this system. This system provides either a facial recognition security feature or a keypad is provided to enter the passcode which unlocks the door. Although, it provides security to the doors, it also has somelimitations and drawbacks: Firstly, if the system mainly uses a facial recognition module, there might be a slight chance that sometimes the face may not be detected and hence the door cannot be unlocked. Secondly, if the system uses a


2014 ◽  
Vol 971-973 ◽  
pp. 1710-1713
Author(s):  
Wen Huan Wu ◽  
Ying Jun Zhao ◽  
Yong Fei Che

Face detection is the key point in automatic face recognition system. This paper introduces the face detection algorithm with a cascade of Adaboost classifiers and how to configure OpenCV in MCVS. Using OpenCV realized the face detection. And a detailed analysis of the face detection results is presented. Through experiment, we found that the method used in this article has a high accuracy rate and better real-time.


Now a days one of the critical factors that affects the recognition performance of any face recognition system is partial occlusion. The paper addresses face recognition in the presence of sunglasses and scarf occlusion. The face recognition approach that we proposed, detects the face region that is not occluded and then uses this region to obtain the face recognition. To segment the occluded and non-occluded parts, adaptive Fuzzy C-Means Clustering is used and for recognition Minimum Cost Sub-Block Matching Distance(MCSBMD) are used. The input face image is divided in to number of sub blocks and each block is checked if occlusion present or not and only from non-occluded blocks MWLBP features are extracted and are used for classification. Experiment results shows our method is giving promising results when compared to the other conventional techniques.


Author(s):  
Dr.C K Gomathy ◽  
T. suneel ◽  
Y.Jeeevan Kumar Reddy

The Face recognition and image or video recognition are popular research topics in biometric technology. Real-time face recognition is an exciting field and a rapidly evolving issue. Key component analysis (PCA) may be a statistical technique collectively called correlational analysis . The goal of PCA is to scale back the massive amount of knowledge storage to the dimensions of the functional space required to render the face recognition system. The wide one-dimensional pixel vector generated from the two-dimensional image of the face and therefore the basic elements of the spatial function are designed for face recognition using PCA. this is often the projection of your own space. Sufficient space is decided by the brand. specialise in the eigenvectors of the covariance matrix of the fingerprint image collection. i'm building a camera-based real-time face recognition system and installing an algorithm. Use OpenCV, Haar Cascade, Eigen face, Fisher Face, LBPH and Python for program development.


Sign in / Sign up

Export Citation Format

Share Document