Analysis of Environmental Impact of Deep Sea Development of Mineral Deposits

2019 ◽  
Vol 145 (3/2019) ◽  
pp. 92-97
Author(s):  
Yu.V. Kirichenko ◽  
A.S. Kashirskiy ◽  
G.S. Ivaschenko
2021 ◽  
Author(s):  
Yunxia Zhao ◽  
Jihong Zhang ◽  
Dapeng Qu ◽  
Yanyun Yang ◽  
Wenguang Wu ◽  
...  

Author(s):  
Matthias Golz ◽  
Florin Boeck ◽  
Sebastian Ritz ◽  
Gerd Holbach

The efforts to discover the world’s oceans — even in extremely deep-sea environments — have grown more and more in the past years. In this context, unmanned underwater vehicles play a central role. Underwater systems that are not tethered need to provide an apparatus to ensure a safe return to the surface. Therefore, positive buoyancy is required and can be achieved by either losing weight or expanding volume. A conservative method is the dropping of ballast weight. However, nowadays this method is not appropriate due to the environmental impact. This paper presents a ballast system for an automated ascent of a deep-sea seabed station in up to 6000 m depth. The ballast system uses a DC motor driven modified hydraulic pump and a compressed air auxiliary system inside a pressure vessel. With regard to the environmental contamination in case of a leakage, only water is used as ballast fluid. The modification of an ordinary oil-hydraulic radial piston pump and the set-up of the ballast system is introduced. Results from sea trials in the Atlantic Ocean are presented to verify the functionality of the ballast system.


2018 ◽  
Vol 277 ◽  
pp. 100-110
Author(s):  
Dmytro Maltsev ◽  
Oleksandr Vladyko ◽  
Konrad Kokowski

Analysis of scientific publications of recent years has shown the need to further study the development of man-made mineral deposits in Ukraine. The main reasons for development of man-made deposits were considered, and the basic requirements for mining man-made deposits were formed, including: efficiency increase of mining operations; reduction of negative environmental impact on the region and restoration of land after industrial activity. Technology that made it possible to group dumps based on their formation is analyzed, which allowed to form clusters. They allow to determine the optimal technology for the development of man-made deposits based on the type of minerals to be extracted and the method of its formation. As a result of the study, the algorithm of making decision on the choice of optimal technology for the development of man-made deposits based on graphical data was developed, taking into account the type of minerals to be extracted, depending on the structure of the deposit and the specific features of its formation.


Minerals ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 3 ◽  
Author(s):  
Sang-Joon Pak ◽  
Inah Seo ◽  
Kyeong-Yong Lee ◽  
Kiseong Hyeong

The critical metal contents of four types of seabed mineral resources, including a deep-sea sediment deposit, are evaluated as potential rare earth element (REE) resources. The deep-sea resources have relatively low total rare earth oxide (TREO) contents, a narrow range of TREO grades (0.049–0.185%), and show characteristics that are consistent with those of land-based ion adsorption REE deposits. The relative REO distributions of the deep-seabed resources are also consistent with those of ion adsorption REE deposits on land. REEs that are not part of a crystal lattice of host minerals within deep-sea mineral deposits are favorable for mining, as there is no requirement for crushing and/or pulverizing during ore processing. Furthermore, low concentrations of Th and U reduce the risk of adverse environmental impacts. Despite the low TREO grades of the deep-seabed mineral deposits, a significant TREO yield from polymetallic nodules and REE-bearing deep-sea sediments from the Korean tenements has been estimated (1 Mt and 8 Mt, respectively). Compared with land-based REE deposits, deep-sea mineral deposits can be considered as low-grade mineral deposits with a large tonnage. The REEs and critical metals from deep-sea mineral deposits are important by-products and co-products of the main commodities (e.g., Co and Ni), and may increase the economic feasibility of their extraction.


2019 ◽  
Author(s):  
Magdalini Christodoulou ◽  
Timothy O'Hara ◽  
Andrew Hugall ◽  
Sahar Khodami ◽  
Clara F. Rodrigues ◽  
...  

Abstract. The largest and commercially appealing mineral deposits can be found in the abyssal seafloor of the Clarion-Clipperton Zone (CCZ), a polymetallic nodule province, in the NE Pacific Ocean, where experimental mining is due to take place. In anticipation of deep-sea mining impacts, it has become essential to rapidly and accurately assess biodiversity. For this reason, ophiuroid material collected during seven scientific cruises from five exploration license areas within CCZ, one area protected from mining (APEI3, Area of Particular Environmental Interest) in the periphery of CCZ and the DIS-turbance and re-COLonisation (DISCOL) Experimental Area (DEA), in the SE Pacific Ocean, was examined. Specimens were genetically analysed using a fragment of the mitochondrial cytochrome c oxidase subunit I (COI). Maximum Likelihood and Neighbour Joining trees were constructed, while four tree-based and distance-based methods of species delineation (ABGD, BINs, GMYC, mPTP) were employed to propose Secondary Species Hypotheses (SSHs) within the ophiuroids collected. The species delimitations analyses concordant results revealed the presence of 43 deep-sea brittle stars SSHs, revealing an unexpectedly high diversity and showing that the most conspicuous invertebrates in abyssal plains have been so far considerably under-estimated. The number of SSHs found in each area varied from 5 (IFREMER area) to 24 (BGR area), while 13 SSHs were represented by singletons. None of the SSHs was found to be present in all 7 areas, while the majority of species (44.2 %) had a single-area presence (19 SSHs). The most common species were Ophioleucidae sp. (Species 29), Amphioplus daleus (Species 2) and Ophiosphalma glabrum (Species 3), present in all areas except APEI3. The biodiversity patterns could be mainly attributed to POC fluxes that could explain the highest species numbers found in BGR (German contractor area) and UKSRL (UK contractor area) areas. The five exploration contract areas belong to a mesotrophic province, while in contrary the APEI3 is located in an oligotrophic province which could explain the lowest diversity as well as very low similarity with the other six study areas. Based on these results the representativeness and the appropriateness of APEI3 to meet its purpose of preserving the biodiversity of the CCZ fauna are questioned. Finally, this study provides the foundation for biogeographic and functional analyses that will provide insight into the drivers of species diversity and its role in ecosystem function.


Sign in / Sign up

Export Citation Format

Share Document