Options for increasing the efficiency of development of low-amplitude gas deposits during active water-flooding

2018 ◽  
pp. 5-10
Author(s):  
R.I. Sharipov ◽  
◽  
A.I. Davletshin ◽  
A.Yu. Yushkov ◽  
O.A. Loznyuk ◽  
...  
Keyword(s):  
Author(s):  
Ying-xian Liu ◽  
Jie Tan ◽  
Hui Cai ◽  
Yan-lai Li ◽  
Chun-yan Liu

AbstractThe water flooding characteristic curve method is one of the essential techniques to predict recoverable reserves. However, the recoverable reserves indicated by the existing water flooding characteristic curves of low-amplitude reservoirs with strong bottom water increase gradually, and the current local recovery degree of some areas has exceeded the predicted recovery rate. The applicability of the existing water flooding characteristic curves in low-amplitude reservoirs with strong bottom water is lacking, which affects the accurate prediction of development performance. By analyzing the derivation process of the conventional water flooding characteristic curve method, this manuscript finds out the reasons for the poor applicability of the existing water flooding characteristic curve in low-amplitude reservoir with strong bottom water and corrects the existing water flooding characteristic curve according to the actual situation of the oilfield and obtains the improvement method of water flooding characteristic curve in low-amplitude reservoir with strong bottom water. After correction, the correlation coefficient between $$\frac{{k_{ro} }}{{k_{rw} }}$$ k ro k rw and $$S_{w}$$ S w is 95.92%. According to the comparison between the actual data and the calculated data, in 2021/3, the actual water cut is 97.29%, the water cut predicted by the formula is 97.27%, the actual cumulative oil production is 31.19 × 104t, and the predicted cumulative oil production is 31.31 × 104t. The predicted value is consistent with the actual value. It provides a more reliable method for predicting low-amplitude reservoirs' recoverable ability with strong bottom water and guides the oilfield's subsequent decision-making.


1981 ◽  
Vol 42 (C5) ◽  
pp. C5-157-C5-162 ◽  
Author(s):  
H. Mizubayashi ◽  
S. Okuda
Keyword(s):  

1987 ◽  
Vol 26 (06) ◽  
pp. 248-252 ◽  
Author(s):  
M. J. van Eenige ◽  
F. C. Visser ◽  
A. J. P. Karreman ◽  
C. M. B. Duwel ◽  
G. Westera ◽  
...  

Optimal fitting of a myocardial time-activity curve is accomplished with a monoexponential plus a constant, resulting in three parameters: amplitude and half-time of the monoexponential and the constant. The aim of this study was to estimate the precision of the calculated parameters. The variability of the parameter values as a function of the acquisition time was studied in 11 patients with cardiac complaints. Of the three parameters the half-time value varied most strongly with the acquisition time. An acquisition time of 80 min was needed to keep the standard deviation of the half-time value within ±10%. To estimate the standard deviation of the half-time value as a function of the parameter values, of the noise content of the time-activity curve and of the acquisition time, a model experiment was used. In most cases the SD decreased by 50% if the acquisition time was increased from 60 to 90 min. A low amplitude/constant ratio and a high half-time value result in a high SD of the half-time value. Tables are presented to estimate the SD in a particular case.


KURVATEK ◽  
2017 ◽  
Vol 1 (2) ◽  
pp. 21-31
Author(s):  
Fatimah Miharno

ABSTRACT*Zefara* Field formation Baturaja on South Sumatra Basin is a reservoir carbonate and prospective gas. Data used in this research were 3D seismik data, well logs, and geological information. According to geological report known that hidrocarbon traps in research area were limestone lithological layer as stratigraphical trap and faulted anticline as structural trap. The study restricted in effort to make a hydrocarbon accumulation and a potential carbonate reservoir area maps with seismic attribute. All of the data used in this study are 3D seismic data set, well-log data and check-shot data. The result of the analysis are compared to the result derived from log data calculation as a control analysis. Hydrocarbon prospect area generated from seismic attribute and are divided into three compartments. The seismic attribute analysis using RMS amplitude method and instantaneous frequency is very effective to determine hydrocarbon accumulation in *Zefara* field, because low amplitude from Baturaja reservoir. Low amplitude hints low AI, determined high porosity and high hydrocarbon contact (HC).  Keyword: Baturaja Formation, RMS amplitude seismic attribute, instantaneous frequency seismic attribute


2019 ◽  
pp. 5-12 ◽  
Author(s):  
M.V. Chertenkov ◽  
◽  
E.A. Mamedov ◽  
I.V. Khain ◽  
A.R. Aubakirov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document