scholarly journals The effect of gold nanoparticles on WO3 thin film

2018 ◽  
Vol 16 (36) ◽  
pp. 11-28
Author(s):  
Isam M. Ibrahim

Chemical spray pyrolysis technique was used at substrate temperature 250 ˚C with annealing temperature at 400 ˚C (for 1hour) to deposition tungsten oxide thin film with different doping concentration of Au nanoparticle (0, 10, 20, 30 and 40)% wt. on glass substrate with thickness about 100 nm. The structural, optical properties were investigated. The X-ray diffraction shows that the films at substrate temperature (250 ˚C) was amorphous while at annealing temperature have a polycrystalline structure with the preferred orientation of (200), all the samples have a hexagonal structure for WO3 and Au gold nanoparticles have a cubic structure. Atomic force microscopy (AFM) was used to characterize the morphology of the films. The optical properties of the films were studied using UV-Vis spectrophotometer within the wavelength in the range (300-1100) nm. The optical energy gap of the films was (2.80) eV for WO3 and it decreased at annealing temperature (400 ˚C) equal to (2.65) eV. And finally the optical constants such as refractive index, real and imaginary dielectrics, absorption coefficient, absorption, transmission, and extinction coefficient were investigated.

Author(s):  
Nidhal Nissan Jandow

This work presents the effect of Cu-doping on some optical properties of Cu:NiO thin film prepared by spray pyrolysis technique. UV-Visible spectrophotometer in the range 380-900 nm used to determine the absorbance spectra for various Cu-doping of Cu:NiO thin film. The transmittance and energy gap are decreased with increasing Cu-doping in the prepared films, while absorption coefficient, extinction coefficient, and skin depth are increased with increasing Cu-doping.


2014 ◽  
Vol 11 (2) ◽  
pp. 518-526
Author(s):  
Baghdad Science Journal

Thin films of pure tin mono-sulfide SnS and tin mono-sulfide for (1,2,3,4)% fluorine SnS:F with Thicknesses of (0.85 ±0.05) ?m and (0.45±0.05) ?m respectively were prepared by chemical spray pyrolysis technique. the effect of doping of F on structural and optical properties has been studied. X-Ray diffraction analysis showed that the prepared films were polycrystalline with orthorhombic structure. It was found that doping increased the intensity of diffraction peaks. Optical properties of all samples were studied by recording the absorption and transmission spectrum in range of wave lengths (300-900) nm. The optical energy gap for direct forbidden transition and indirect allowed transition were evaluated It is found that for doping less than 2% the optical energy gap increases as the percentage of doping increases in the samples while for doping more than 2% the values of the optical energy gap decreases as the percentage of doping increases.


Author(s):  
Akintunde Ayodeji Ajayi ◽  
Aderemi Babatunde Alabi ◽  
Olutayo Wale Abodunrin ◽  
Kazeem Adeleke Musiliyu

Zinc Oxide (ZnO) thin film has been synthesized using the chemical spray pyrolysis technique and ethylene glycol has been used as solvent during the synthesis. X-ray diffraction (XRD) results show cubic and tetragonal phases of ZnO and the grain size was calculated to be 2.57nm. Optical characterization reveals very high transmittance within the visible-ultraviolet region and a bandgap of 3.49 eV was obtained for ZnO thin film. Scanning Electron Microscopic (SEM) analysis showed a void-free non-homogenous surface.


2019 ◽  
Vol 27 (03) ◽  
pp. 1950124 ◽  
Author(s):  
MOHAMMED YARUB HANI ◽  
ADDNAN H. AL-AARAJIY ◽  
AHMED M. ABDUL-LETTIF

Nickel(II) phthalocyanine-tetrasulfonic acid tetrasodium salt (NiTsPc) thin films were deposited on glass substrates at different substrate temperatures ([Formula: see text]) by chemical spray pyrolysis (CSP) technique. The substrate temperature varied from 110∘C to 310∘C in 50∘C steps. The substrate surface temperature is the main parameter that determines the film morphology and properties of the thin films. The structural properties of the deposited NiTsPc thin films were investigated by X-ray diffraction (XRD) and from the obtained results, it was shown that depositing thin films using 210∘C as [Formula: see text] results in higher crystallinity. Atomic force microscope (AFM) was employed to obtain the surface topography and to calculate the roughness and grain size. The smoothest thin film surface was obtained when using at 160∘C, while the highest roughness was obtained at 310∘C. The optical properties were investigated by ultraviolet visible (UV-Vis) spectrophotometer and fluorescence spectrophotometer. From the absorption spectra recorded in the wavelength range 190–1100[Formula: see text]nm, two absorption bands were observed, which are known as Soret and Q-band. By observing the absorption spectrum, it can be concluded that the deposited thin films at 110∘C–310∘C have direct energy gap. From Tauc plot relation, the energy gap ([Formula: see text]) was calculated. The values of the energy gap were between 3.05 and 3.14[Formula: see text]eV. It was observed that different [Formula: see text] highly affects the structural and optical properties of the deposited thin films. The crystallinity, grain size, roughness and the optical properties were strongly affected by the different substrate temperatures.


Author(s):  
Sami Salmann Chiad

By chemical spray pyrolysis method. The CdO thin film prepared at constant film thickness (350 nm). The prepared films are annealed at a temperature of 450 and 500 °C. The optical properties are calculated from the measurement of UV-Visible spectrophotometer spectrum in the range of (300-900) nm at room temperature. The transmittance, absorption coefficient, extinction coefficient, refractive index, and skin depth are calculated as annealing temperature. The energy gap decreased from 2.52 eV to 2.47 eV when the annealing temperature increased from room temperature to 500 °C.


2021 ◽  
Vol 1021 ◽  
pp. 107-114
Author(s):  
Buthainah A. Ibrahim ◽  
Ziad T. Khodiar ◽  
Marwan M. Farhan

Cobalt oxide thin film (Co3O4) has been prepared from cobalt chloride with distilled water on conducting glass substrates Fluorine doped Tin Oxide (FTO) at (400ºC) by depositing chemical spray pyrolysis, with thickness (200 nm). The structural properties are studied by XRD. Also, optical properties and electrical properties of Co3O4 thin film are studied by UV spectroscopy and Cyclic voltammetry (CV) respectively. The effects of gamma irradiation on optical properties are also examined. XRD results showed that the film was polycrystalline with cubic structure having preferred orientation (111). The as-prepared Co3O4 film exhibits a noticeable EC behaviour with reversible colour which changes from dark grey to pale yellow with bleaching time (55 s) and colouring time (40 s). After irradiation, the optical properties showed that as the transmittance decrease leads to decrease the direct optical band gap from (3.68eV) to (3.55eV)


Author(s):  
Ahmed K. Abass, ◽  
Sura A. Abd Al-Hassan

Tin oxide thin films were deposited on glass substrate at (400 ºC) by using chemical spray pyrolysis technique and its composed with cobalt oxide in different ratio. The structural, morphologic and optical properties of  thin films are investigated by: (XRD) X-Ray Diffraction, (AFM) Atomic Force Microscopy, (UV-Vis )Ultraviolet – Visible Spectroscopy. XRD patterns indicate that the structure of tin oxide thin film is tetragonal. All prepared films were nano materials as stated by Scherrer equation. It might have been found by AFM analysis, those surface roughness increase with increasing of cobalt ratio. By provision about Tauc plots, optical band gaps for thin                               


Author(s):  
Nadir Fadhil Habubi ◽  
Sami Salman Chiad ◽  
Khalid Haneen Abass ◽  
Mahmood Muwafaq Abood

Nickel oxide doped Fe2O3thin films have been prepared by spray pyrolysis technique on glass substrate. The initial solution was including a 0.1 M/L for both NiCl2and FeCl3diluted with redistilled water and a few drops of HCl. The effect of annealing temperature on optical properties was studied, using UV-Visible spectrophotometer to determine absorption spectra at a thickness of 400 nm. The reflectance increased with increasing annealing temperature, such as α, k, and n.While the transmittance decreases with increasing annealing temperature and the energy gap decreased from 2.68 eV before annealing to 2.70 eV after 500°C annealing temperature.


2021 ◽  
Vol 13 (2) ◽  
pp. 347-359
Author(s):  
G. Ravinder ◽  
C. J. Sreelatha ◽  
P. Chandar rao ◽  
P. Nagaraju ◽  
Y. Vijayakumar ◽  
...  

Nanostructured vanadium pentoxide (V2O5) thin films are successfully deposited on an ultrasonically cleaned glass substrate with different deposition parameters via spray pyrolysis technique. The X-ray diffraction analysis showed that the V2O5 films are polycrystalline with an orthorhombic structure. SEM analysis illustrated that the gossamer-like morphology at the substrate temperature of 325 °C. The average crystallite size of the films changes from 14.29 to 23.81 nm, due to the deposition temperature enhancement. The film which is deposited at a substrate temperature of 325 °C has shown high transmittance. XPS studies validated the existence of V5+ oxidation form of vanadium in vanadium oxide thin film. Gas sensors are electronic devices designed to trace the concentration of different toxic gases existing in the environment. Gas sensing characterization has been performed using static liquid distribution technique towards different volatile organic compounds such as acetone, methanol, toluene and xylene. The thin film prepared at a substrate temperature of 325 °C has shown the maximum response towards 100 ppm of toluene at room temperature. The response and recovery times are determined using transient response curve, and the obtained values are 21sec and 31sec, respectively.


Author(s):  
Khalid Haneen Abass

Fe2O3 thin films that doped by NiO were obtained on glass substrates by the chemical spray pyrolysis technique, and annealed at 450 °C and 500 °C. The effect of annealing on optical properties was studied by recording the absorbance spectra using UV-Visible spectrophotometer. The refractive index decreases with increasing annealing temperature, such as an optical band gap that decreases from 2.68 eV before annealing to 2.58 eV after annealing of 500 °C. Absorption coefficient and extinction coefficient increase with increasing annealing temperature.


Sign in / Sign up

Export Citation Format

Share Document