scholarly journals Effect of Zinc (Zn) -Doped on the Structural, Optical and Electrical Properties of (Cdo)1-Xznx Films Prepared by Pulsed Laser Deposition Technique

2021 ◽  
Vol 19 (51) ◽  
pp. 64-71
Author(s):  
Haidar khudair Abbas ◽  
Kadhim A. Aadim ◽  
Ali H. Khidhir

Pure cadmium oxide films (CdO) and doped with zinc were prepared at different atomic ratios using a pulsed laser deposition technique using an ND-YAG laser from the targets of the pressed powder capsules. X-ray diffraction measurements showed a cubic-shaped of CdO structure. Another phase appeared, especially in high percentages of zinc, corresponding to the hexagonal structure of zinc. The degree of crystallinity, as well as the crystal size, increased with the increase of the zinc ratio for the used targets. The atomic force microscopy measurements showed that increasing the dopant percentage leads to an increase in the size of the nanoparticles, the particle size distribution was irregular and wide, in addition, to increase the surface roughness of the nanoparticles. An increase in the zinc ratio also led to a decrease in the energy gap. While the Hall effect measuring showed an increase in the concentration of charge carriers and a decrease in their mobility with increasing the doping ratio.

2008 ◽  
Vol 373-374 ◽  
pp. 142-145
Author(s):  
Hong Xia Li ◽  
Ren Guo Song ◽  
Xin Wu ◽  
Ji Yang Wang

High quality Nd:YVO4 thin films were fabricated successfully by using a pulsed laser deposition technique. The properties of the samples were characterized by using X-ray diffraction, atomic force microscopy, and prism-coupling measurements. According to above discussion, we concluded the optimal preparation conditions for Nd:YVO4 films prepared on Si/SiO2 substrates.


1999 ◽  
Vol 574 ◽  
Author(s):  
V. Trtík ◽  
F. Sánchez ◽  
C. Ferrater ◽  
M. Varela ◽  
L. Fábrega ◽  
...  

AbstractYBa2Cu3Oy/SrTiO3/La2/3Sr1/3MnO3 heterostructures have been deposited on LaAlO3(001) and SrTiO3(001) substrates by pulsed laser deposition. First, the influence of deposition conditions on crystallinity and morphology of single LSMO films was examined. Results were used for preparation of heterostructures in tri-layer and cross-strip geometry. Cross-strip geometry was defined by direct shadow mask patterning. Different characterization techniques have been used to determine and correlate the heterostructure properties. A complete analysis of the crystal structure has been carried out with a four-circle difractometer. Morphology has been studied by scanning electron microscopy and atomic force microscopy in order to determine surface roughness and droplet density. Basic electrical properties of films have been determined.


Author(s):  
Sudheer Neralla ◽  
Sergey Yarmolenko ◽  
Dhananjay Kumar ◽  
Devdas Pai ◽  
Jag Sankar

Alumina is a widely used ceramic material due to its high hardness, wear resistance and dielectric properties. The study of phase transformation and its correlation to the mechanical properties of alumina is essential. In this study, interfacial adhesion properties of alumina thin films are studied using cross-sectional nanoindentation (CSN) technique. Alumina thin films are deposited at 200 and 700 °C, on Si (100) substrates with a weak Silica interface, using pulsed laser deposition (PLD) process. Effect of annealing on the surface morphology of the thin films is studied using atomic force microscopy. Xray diffraction studies revealed that alumina thin films are amorphous in nature at 200 °C and polycrystalline with predominant gamma alumina phase at 700 °C.


2008 ◽  
Vol 8 (11) ◽  
pp. 5748-5752
Author(s):  
S. Krishnamurthy ◽  
T. Donnelly ◽  
N. McEvoy ◽  
W. Blau ◽  
J. G. Lunney ◽  
...  

We report the growth of carbon nanotubes on the size controlled iron catalytic nanoparticles. The nanotubes were grown by thermal chemical vapour deposition (CVD) in the temperature range 600–850 °C. The Fe films were deposited on silicon by pulsed laser deposition in vacuum. Atomic force microscopy measurements were performed on the catalytic nanoparticles. The topography of the catalytic nanoparticles shows the homogenous distribution of Fe catalyst. We observe the nanotubes are produced only at temperatures between 650 and 800 °C, and within this narrow temperature regime the yield of nanotubes reaches a maximum around 750 °C and then declines. Raman measurements illustrate a high G/D peak ratio indicating good nanotube quality. By further defining the size of the catalyst the diameter of these carbon nanotubes can be controlled.


2012 ◽  
Vol 1432 ◽  
Author(s):  
M. Baseer Haider ◽  
M. F. Al-Kuhaili ◽  
S. M. A. Durrani ◽  
Imran Bakhtiari

Abstract:Gallium nitride thin films were grown by pulsed laser deposition. Subsequently, post-growth annealing of the samples was performed at 400, and 600 oC in the nitrogen atmosphere. Surface morphology of the as-grown and annealed samples was performed by atomic force microscopy, surface roughness of the films improved after annealing. Chemical analysis of the samples was performed using x-ray photon spectroscopy, stoichiometric Gallium nitride thin films were obtained for the samples annealed at 600 oC. Optical measurements of the samples were performed to investigate the effect of annealing on the band gap and optical constants the films.


2000 ◽  
Vol 658 ◽  
Author(s):  
Trong-Duc Doan ◽  
Cobey Abramowski ◽  
Paul A. Salvador

ABSTRACTThin films of NdNiO3 were grown using pulsed laser deposition on single crystal substrates of [100]-oriented LaAlO3 and SrTiO3. X-ray diffraction and reflectivity, scanning electron microscopy, and atomic force microscopy were used to characterize the chemical, morphological and structural traits of the thin films. Single-phase epitaxial films are grown on LaAlO3 and SrTiO3 at 625°C in an oxygen pressure of 200 mTorr. At higher temperatures, the films partially decompose to Nd2NiO4 and NiO. The films are epitaxial with the (101) planes (orthorhombic Pnma notation) parallel to the substrate surface. Four in-plane orientational variants exist that correspond to the four 90° degenerate orientations of the film's [010] with respect to the in-plane substrate directions. Films are observed to be strained in accordance with the structural mismatch to the underlying substrate, and this leads, in the thinnest films on LaAlO3, to an apparent monoclinic distortion to the unit cell.


2018 ◽  
Vol 9 ◽  
pp. 686-692 ◽  
Author(s):  
Daiki Katsube ◽  
Hayato Yamashita ◽  
Satoshi Abo ◽  
Masayuki Abe

We have designed and developed a combined system of pulsed laser deposition (PLD) and non-contact atomic force microscopy (NC-AFM) for observations of insulator metal oxide surfaces. With this system, the long-period iterations of sputtering and annealing used in conventional methods for preparing a metal oxide film surface are not required. The performance of the combined system is demonstrated for the preparation and high-resolution NC-AFM imaging of atomically flat thin films of anatase TiO2(001) and LaAlO3(100).


2000 ◽  
Vol 617 ◽  
Author(s):  
Masaaki Yamazato ◽  
Masamitsu Nagano ◽  
Tomoaki Ikegami ◽  
Kenji Ebihara

AbstractFerroelectric PbZr0.52Ti0.48O3(PZT)/YBa2 Cu3O7−x(YBCO) heterostructures on MgO substrate were fabricated by KrF pulsed laser deposition. The grid electrode was set between a substrate and target for improvement of surface morphology. The typical PZT layer had excellent ferroelectric properties; remnant polarization of 39 µC/cm2, coercive electric field of 41 kV/cm, loss tan δ=0.04, and dielectric constant of 950. X-ray diffraction results show that the films had highly c-axis and (a, b) plane orientation. The full widths at half-maximum (FWHM) of rocking curves was decreased with increasing the applied voltage of grid electrode. Atomic force microscopy (AFM) images of PZT layer showed that the film morphology was improved by using a grid electrode.


1996 ◽  
Vol 441 ◽  
Author(s):  
R. Leuchtner ◽  
R. Yanochko ◽  
J. Krzanowski ◽  
W. Brock ◽  
J. Quinn

AbstractLow work function surfaces offer great promise as thermionic converters and neutral conversion surfaces due to the relative ease with which electrons may be removed. BaZrO3 surfaces were prepared using pulsed laser deposition (PLD) and their materials properties evaluated for potential use as a neutral conversion surface for space applications. Single layer films were fabricated at temperatures ranging from 110°C to 600°C, and as a function of background ambient pressure. The degree of crystallinity of the resulting films was measured using x-ray diffraction (XRD) and the surface morphology evaluated with atomic force microscopy (AFM). The film quality was found to be directly related to substrate temperature: an increase in grain size from ˜ 10 nm to >50 nm and improved crystal orientation with respect to the substrate were observed as the deposition temperature was increased from 110°C to 600°C.


Sign in / Sign up

Export Citation Format

Share Document