scholarly journals A method for modeling of the consequences of super-continuous accidents on oil production objects in the Arctic region

2018 ◽  
Vol 64 (4) ◽  
pp. 439-454
Author(s):  
S. N. Zatsepa ◽  
A. A. Ivchenko ◽  
V. V. Solbakov ◽  
V. V. Stanovoy

The elimination of the oil spill at the DWH (Deep-Water Horizon) well in the Gulf of Mexico took place in almost ideal hydrometeorological conditions, which did not create serious difficulties for the operation of the response forces and means. There is a problem of assessing the possible consequences of an accident of this scale in the Arctic conditions. The simulation method of a long-lasting oil spill in the ice infested region is considered. A new model for the spreading of an elementary spill (ES) is described. A total oil spill is constructed as superposition of a number of an elementary spill. Taking into account the transport of oil by drifting ice, the potential impact of spills on vulnerable areas in the sea and coasts can reach distance of hundreds and thousands of kilometers. The distribution of ES on the surface of ice-free water is limited by the lifetime, depending on the properties of oil and regional hydro-meteorological conditions and elongated by the duration of the ice capture. The paper presents examples of estimating the lifetime of an ongoing oil spill in open water conditions based on the analysis of wind conditions in the area of interest by long-term series of meteorological reanalysis. On the basis of the analysis, an efficient computational algorithm to estimate the probability of a long-lasting oil spills impact on specially protected natural areas is constructed.

1985 ◽  
Vol 1985 (1) ◽  
pp. 31-34 ◽  
Author(s):  
J. S. Shum ◽  
M. Borst Mason & Hanger-Silas

ABSTRACT The increase in petroleum development activities in the arctic region has raised concerns over potential oil spills during the broken ice season. Currently, exploratory drilling for oil and gas is restricted during this season due to the lack of proven oil spill cleanup methods for broken ice fields. Test programs have been conducted at the U.S. Environmental Protection Agency's Oil and Hazardous Materials Simulated Environmental Test Tank (OHMSETT) to determine the feasibility of cold weather testing and to evaluate various oil spill cleanup methods considered for use in the arctic. This paper describes a test program to determine the practicality of using a catamaran-mounted rope-mop skimmer for spill cleanup in broken ice fields. An Oil Map Pollution Control, Ltd., prototype arctic skimmer was tested in the test tank under controlled conditions during January 30 to February 7, 1984. Freshwater ice cubes of 250 to 280 millimeters (mm) were used in the tests to approximate a broken ice field. During tests, a predetermined ice condition was established across the encounter width of the rope mops and oil was distributed over the ice. The oil and ice were channeled into the skimmer by two booms, which were joined to the skimmer at the bow. Nine tests were conducted at a tow speed of 1 knot using Circo 4X light oil. During the tests, ice concentrations were varied from 0 to 75 percent of the surface area, and oil slick thickness varied from 3 to 8 mm. The test results demonstrated the spill cleanup capability of the skimmer in ice-infested waters having up to 50 percent ice coverage. At higher ice concentrations, the skimmer was ineffective due to ice jamming at the skimmer inlet.


2021 ◽  
Vol 9 (2) ◽  
pp. 201
Author(s):  
Jessica Manning ◽  
Megan Verfaillie ◽  
Christopher Barker ◽  
Catherine Berg ◽  
Amy MacFadyen ◽  
...  

There is a greater probability of more frequent and/or larger oil spills in the Arctic region due to increased maritime shipping and natural resource development. Accordingly, there is an increasing need for effective spilled-oil computer modeling to help emergency oil spill response decision makers, especially in waters where sea ice is present. The National Oceanic & Atmospheric Administration (NOAA) Office of Response & Restoration (OR&R) provides scientific support to the U.S. Coast Guard Federal On-Scene Coordinator (FOSC) during oil spill response. OR&R’s modeling products must provide adequate spill trajectory predictions so that response efforts minimize economic, cultural, and ecologic impacts, including those to species, habitats, and food supplies. The Coastal Response Research Center is conducting a project entitled Oil Spill Modeling for Improved Response to Arctic Maritime Spills: The Path Forward, in conjunction with modelers, responders, and researchers. A goal of the project is to prioritize new investments in model and tool development to improve response effectiveness in the Arctic. The project delineated FOSC needs during Arctic maritime spill response and provided a solution communicating sources of uncertainty in model outputs using a Confidence Estimates of Oil Model Inputs and Outputs (CEOMIO) table. The table shows the level of confidence (high, medium, low) in a model’s trajectory prediction over scenario-specific time intervals and the contribution of different component inputs (e.g., temperature, wind, ice) to that result.


1985 ◽  
Vol 1985 (1) ◽  
pp. 395-398 ◽  
Author(s):  
James J. Swiss ◽  
Donald J. Smrke ◽  
William M. Pistruzak

ABSTRACT Disposing of oil and oiled debris from Arctic oil spills presents problems not encountered in temperate regions. The remoteness of potential spill sites, the wide range of environmental conditions, the lack of support facilities like roads and dump sites, and the presence of permafrost make it impossible to use many standard disposal techniques used in the south. To solve this problem, Dome Petroleum Limited, has developed a number of unique techniques for disposing of oil and oiled debris in Arctic spill responses. These techniques include (1) a method for using air-deployable igniters to burn pooled oil, (2) an air-transportable burner that can be flown to remote sites to burn recovered liquid oil with water contents up to 80 percent, (3) a helicopter-transportable incinerator for burning oil-contaminated debris at remote sites, in which forced air cooling replaces refractory material as fire box protection, and (4) a fireproof boom, for offshore open water, that can collect and burn oil in one step. All of these techniques were developed to address specific disposal problems in the Arctic. They now form part of the industry's Beaufort Sea oil spill response arsenal.


Polar Biology ◽  
2021 ◽  
Vol 44 (3) ◽  
pp. 575-586
Author(s):  
Pepijn De Vries ◽  
Jacqueline Tamis ◽  
Jasmine Nahrgang ◽  
Marianne Frantzen ◽  
Robbert Jak ◽  
...  

AbstractIn order to assess the potential impact from oil spills and decide the optimal response actions, prediction of population level effects of key resources is crucial. These assessments are usually based on acute toxicity data combined with precautionary assumptions because chronic data are often lacking. To better understand the consequences of applying precautionary approaches, two approaches for assessing population level effects on the Arctic keystone species polar cod (Boreogadus saida) were compared: a precautionary approach, where all exposed individuals die when exposed above a defined threshold concentration, and a refined (full-dose-response) approach. A matrix model was used to assess the population recovery duration of scenarios with various but constant exposure concentrations, durations and temperatures. The difference between the two approaches was largest for exposures with relatively low concentrations and short durations. Here, the recovery duration for the refined approach was less than eight times that found for the precautionary approach. Quantifying these differences helps to understand the consequences of precautionary assumptions applied to environmental risk assessment used in oil spill response decision making and it can feed into the discussion about the need for more chronic toxicity testing. An elasticity analysis of our model identified embryo and larval survival as crucial processes in the life cycle of polar cod and the impact assessment of oil spills on its population.


2014 ◽  
Vol 2014 (1) ◽  
pp. 1215-1225 ◽  
Author(s):  
Haibo Niu ◽  
Kenneth Lee ◽  
Michel C. Boufadel ◽  
Lin Zhao ◽  
Brian Robinson

ABSTRACT The expansion of offshore oil and gas and marine transport activities in the Arctic have raised the level of risk for an oil spill to occur in the Arctic region. Existing technologies for oil spill cleanup in ice-covered conditions are limited and there is a need for improved oil spill countermeasures for use under Arctic conditions. A recent field study has assessed a proposed oil spill response technique in ice-infested waters based on the application of fine minerals in a slurry with mixing by propeller-wash to promote the formation of oil-mineral aggregates (OMA). While it was verified in the experimental study that the dispersion was enhanced and mineral fine additions promoted habitat recovery by enhancing both the rate and extent of oil biodegradation, limited monitoring data provide little insights on the fate of dispersed oil after the response. To help understand the oil transport process following mineral treatment in ice-covered conditions, mathematical modeling was used in this study to simulate the transport of OMA and calculate the mass balances of the spilled oil. To study the effects of ice and minerals on the fate and transport, the result was compared with scenarios without ice and without the addition of mineral fines. The results show general agreement between the modeling results and field observations, and further confirm the effectiveness and potential for using mineral treatment as a new oil spill counter-measure technology. This technique offers several operational advantages for use under Arctic conditions, including reduced number of personnel required for its application, lack of need for waste disposal sites, and cost effectiveness.


2020 ◽  
Author(s):  
Philipp Richter ◽  
Mathias Palm ◽  
Christine Weinzierl ◽  
Penny Rowe ◽  
Justus Notholt

<p>As a precursor of the current MOSAiC campaign, the PASCAL campaign took place in summer 2017 around Svalbard [1]. In the scope of the project (AC)3, infrared radiation emitted by clouds was measured using a calibrated Fourier Transform Infrared Spectrometer (EM-FTIR). EM-FTIR can be used for different purposes, like the observation of trace gases or microphysical cloud parameters (MCP) like cloud optical depths and cloud effective droplet radii. In the observation of MCP, EM-FTIR can be used to measure optically thin clouds with very low amounts of liquid water paths below 30 gm-2, where microwave radiometer face problems because of their larger measuring uncertainty. </p><p>The retrieval of the MCP is performed using the newly introduced retrieval code CLARRA [2]. CLARRA shows a high accuracy in the retrieval of MCP from low-level clouds, which were often observed during the measurements. </p><p>The measurements were performed between June 2017 and August 2017 around Svalbard and include measurements of clouds over sea ice and open water. The spatial distribution of the MCP around Svalbard and a comparison to model results will be shown. This dataset can later serve as a reference for the question, how representative the measurements in Ny-Alesund on Spitzbergen are for the nearby arctic region.</p><p>[1] Wendisch et al., 2019: The Arctic Cloud Puzzle: Using ACLOUD/PASCAL Multi-Platform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification, Bull. Amer. Meteor. Soc., 100 (5), 841–871, doi:10.1175/BAMS-D-18-0072.1<br>[2] Rowe et al., 2019: Toward autonomous surface-based infrared remote sensing of polar clouds: retrievals of cloud optical and microphysical properties, Atmos. Meas. Tech., 12, 5071–5086, https://doi.org/10.5194/amt-12-5071-2019</p>


1999 ◽  
Vol 1999 (1) ◽  
pp. 1163-1166
Author(s):  
Michael Bronson ◽  
Thomas Chappie ◽  
Larry Dietrick ◽  
Ronald Hocking ◽  
James McHale

ABSTRACT In anticipation of the Beaufort Sea's first two offshore production islands, Alaska's North Slope oil producers recently expanded their oil spill recovery tactical plans and equipment. To seek regulatory approval for offshore oil production, industry responders joined agency regulators and made plans to clean up as much as 225,000 barrels of oil from potential blowouts over 15 days. Response technicians are configuring new and existing skimmers, vessels, and barges on the North Slope to implement those planning standards. This paper outlines the oil spill tactical plans and equipment that Alaska's North Slope oil industry recently assembled in seeking regulatory approval for the first offshore production islands in the Arctic. The operators of North America's largest oil fields are beginning the first production from oil wells separated from roads and most spill response vessels. For example, the new Badami production pad lies on the Arctic coast more than 25 miles from the Prudhoe Bay facilities, across river courses and roadless tundra. Eight miles of ice-infested sea will separate the proposed Northstar and Liberty production islands from response vessel berths. The new fields regularly experience waves, cold, and ice invasions that constrain oil recovery efforts. Yet regulatory approval to begin oil production requires that the industry have plans and equipment to clean up all the oil that may enter open water, even from the largest spills, within 72 hours.


2021 ◽  
Vol 15 (6) ◽  
pp. 2835-2856
Author(s):  
Zhixiang Yin ◽  
Xiaodong Li ◽  
Yong Ge ◽  
Cheng Shang ◽  
Xinyan Li ◽  
...  

Abstract. The turbulent heat flux (THF) over leads is an important parameter for climate change monitoring in the Arctic region. THF over leads is often calculated from satellite-derived ice surface temperature (IST) products, in which mixed pixels containing both ice and open water along lead boundaries reduce the accuracy of calculated THF. To address this problem, this paper proposes a deep residual convolutional neural network (CNN)-based framework to estimate THF over leads at the subpixel scale (DeepSTHF) based on remotely sensed images. The proposed DeepSTHF provides an IST image and the corresponding lead map with a finer spatial resolution than the input IST image so that the subpixel-scale THF can be estimated from them. The proposed approach is verified using simulated and real Moderate Resolution Imaging Spectroradiometer images and compared with the conventional cubic interpolation and pixel-based methods. The results demonstrate that the proposed CNN-based method can effectively estimate subpixel-scale information from the coarse data and performs well in producing fine-spatial-resolution IST images and lead maps, thereby providing more accurate and reliable THF over leads.


2021 ◽  
pp. 106-117
Author(s):  
В.С. Наумов ◽  
А.Е. Пластинин ◽  
А.Н. Каленков ◽  
Н.С. Родина

При прогнозировании процессов всплытия нефти от подводных источников в условиях открытой воды существует необходимость получения информации в ускоренном временном режиме для эффективного планирования защитных мероприятий в целях минимизации вреда окружающей среде, что возможно достичь совместным применением методов вычислительной гидродинамики и математической статистики. В работе приведено описание усовершенствованной математической модели всплытия нефтепродуктов от подводных источников. В целях повышения функциональности ранее созданной авторами системы уравнений связи для оценки параметров области возможного всплытия нефти увеличен диапазон изменения одного из ключевых независимых факторов – глубина водоема. В качестве факторов рассматривались: время всплытия, площадь области всплытия нефти, скорость глубинных течений, объем и тип разлитого нефтепродукта, глубина водоема. Новая регрессионная модель прогноза подводного движения разлива нефти обеспечивает прогнозирование распространения нефтяного загрязнения на морских акваториях. Представлены результаты оценки качества разработанной регрессионной модели прогноза подводного движения разлива нефти при всплытии, которая позволяет выполнять оценку параметров области всплытия нефти с одновременным учетом процессов растекания и перемещения под действием глубинных течений. Разработана методика прогноза подводного движения разлива нефти и алгоритм ее практической реализации. Определены структуры входных и выходных данных алгоритма. Приведен пример практического применения модели в Балтийском море. When predicting the processes of oil surfacing from underwater sources in open water conditions, there is a need to obtain information in an accelerated time mode for effective planning of protective measures in order to minimize environmental harm, which can be achieved by the combined application of computational fluid dynamics and mathematical statistics. The paper describes an improved mathematical model for the emergence of oil products from underwater sources. In order to increase the functionality of the system of constraint equations previously created by the authors for assessing the parameters of the area of possible oil flooding, the range of variation of one of the key independent factors, the depth of the reservoir, has been increased. The factors considered were the ascent time, the area of the oil surfacing, the speed of deep currents, the volume and type of spilled oil product, and the depth of the reservoir. The new regression model for predicting the underwater movement of an oil spill provides for predicting the spread of oil pollution in offshore areas. The paper presents the results of assessing the quality of the developed regression model for predicting the underwater movement of an oil spill during ascent, which makes it possible to assess the parameters of the area of oil ascending while taking into account the processes of spreading and movement under the influence of deep currents. A method for predicting the underwater movement of an oil spill and an algorithm for its practical implementation have been developed. The structures of the input and output data of the algorithm are determined. An example of the practical application of the model in the Baltic Sea is given.


1975 ◽  
Vol 1975 (1) ◽  
pp. 329-335
Author(s):  
S.L. Ross

ABSTRACT In mid-1972, the Environmental Emergency Branch was formed within the Canadian Department of the Environment. This organization, which is part of the Environmental Protection Service, is responsible for protective and preventative activities related to pollution emergencies, including oil spills. The technology development work carried out by the branch can be divided into two main programs. One is the testing, evaluation, and development of oil spill countermeasures equipment, materials, and techniques. The program for oil spill equipment including skimmers, booms, pumps, and remote sensing systems is being carried out in Hamilton Harbour and Lake Ontario. Much work is also underway on the testing, evaluation, and development of various oil spill treating agents, including dispersants, absorbents, sinking agents, biodegradation agents, combustion agents, and chemical oil herders. The other main responsibility of the spill technology group is to design and develop various countermeasures systems for specific high risk and sensitive areas in Canada. This program involves putting together the various countermeasures equipment and materials described above into integrated systems that can be used to fight spills in specific locations. Four areas which are being thoroughly investigated at this time are Vancouver Harbour, the Beaufort Sea, the St. Clair River, and the St. Lawrence River. These areas are quite different environmentally, and the “custom-designed” countermeasures systems needed for each area are similarly different. Much of the technology development and research effort in Canada has been directed toward cold environment problems. This includes studies related to drilling blowouts in the Arctic, to pipeline spills under winter conditions, to dyking of storage facilities in the north, and to spills in ice-infested water.


Sign in / Sign up

Export Citation Format

Share Document