Role of Prof. L.I. Ivanov in development of space materials science

Author(s):  
L.S. Novikov ◽  
Keyword(s):  
2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Peter J. Wellmann

AbstractThroughout human history, most further developments or new achievements were accompanied by new materials or new processes that enabled the technologic progress. With concrete devices and applications in mind, synthesis and subsequent treatment of materials naturally went along with the progress. The aim of the underlying article is to spot the role of optimization, of discovery, of trial-and-error approaches, of fundamentals and curiosity driven design and development. In a consecutive examination, five missions addressing the challenges facing our world (identified by the European Council) will be cross linked with seven topical areas from materials science defined by the European Materials Research Society. The scope of this examination is to identify approaches and methods to further develop and innovate materials which form the basis of the anticipated solutions.


MRS Bulletin ◽  
1991 ◽  
Vol 16 (9) ◽  
pp. 26-32 ◽  
Author(s):  
S.A. Barenberg

The Biomaterials Industry Subpanel was chartered by the National Research Council (on behalf of the National Academies of Sciences and Engineering) to address the needs and opportunities in materials science and engineering as perceived by the biomaterials industry. This report represents an initial overview and should not be considered definitive.The Committee examined the short-term, intermediate, and long-term needs of the industry and how external factors such as regulations, lack of standards, and international competition influenced the industry. The industry is heterogeneous and was subsequently defined by the following market segments: artificial organs, biosensors, biotechnology, cardiovascular/blood products, drug delivery, equipment/devices, maxillofacial, ophthalmology, orthopedics, packaging, and wound management.Each of these market segments then addressed the:Role of materials in the industry,Current materials and material needs,Material opportunities and impact,Industrial needs/issues,International competition/foreign initiatives, andRole of the U.S. government.


MRS Bulletin ◽  
1989 ◽  
Vol 14 (3) ◽  
pp. 51-55

The 1989 Spring Meeting of the Materials Research Society will be held at the Town and County Hotel in San Diego, with events spanning April 22-29. Meeting Chairs Robin Farrow, Dick Siegel and Angelica Stacy have developed a program of 16 technical symposia that reflect the continuing key role of materials science in the development of both mature and emerging technologies.Several new topics will reflect emerging areas, including materials for optical storage of information (Symposium F), ultrathin magnetic films (Symposium G), and materials problems of infrastructure (Symposium P). A special workshop will provide a technology update on diamond films (Symposium P) and will feature a joint session with Symposium H, Optical Materials: Processing and Science.Plenary speaker Linus Pauling, research professor at the Linus Pauling Institute of Science and Medicine, will discuss quasicrystals, materials whose atomic structure displays perfect five-fold symmetry, but whose atomic pattern is never exactly repeated as it would be in conventional crystals. During the Plenary Session MRS will also recognize graduate students who have made outstanding contributions as authors or co-authors of papers presented at the 1989 Spring Meeting.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
F. F. Borghi ◽  
A. E. Rider ◽  
S. Kumar ◽  
Z. J. Han ◽  
D. Haylock ◽  
...  

Stem cells (SC) are among the most promising cell sources for tissue engineering due to their ability to self-renew and differentiate, properties that underpin their clinical application in tissue regeneration. As such, control of SC fate is one of the most crucial issues that needs to be fully understood to realise their tremendous potential in regenerative biology. The use of functionalized nanostructured materials (NM) to control the microscale regulation of SC has offered a number of new features and opportunities for regulating SC. However, fabricating and modifying such NM to induce specific SC response still represent a significant scientific and technological challenge. Due to their versatility, plasmas are particularly attractive for the manufacturing and modification of tailored nanostructured surfaces for stem cell control. In this review, we briefly describe the biological role of SC and the mechanisms by which they are controlled and then highlight the benefits of using a range of nanomaterials to control the fate of SC. We then discuss how plasma nanoscience research can help produce/functionalise these NMs for more effective and specific interaction with SCs. The review concludes with a perspective on the advantages and challenges of research at the intersection between plasma physics, materials science, nanoscience, and SC biology.


Author(s):  
Ramakoteswara Rao N ◽  
Kranthi kiran Reddy E ◽  
Leena Gahane ◽  
SV Ranganayakulu

Nano technology is the multi disciplinary science and technology, which has emerged as new science exploiting specific phenomena and direct manipulation of materials on nanoscale. Nanotechnology deals with the physical, chemical, and biological properties of structures and their parts at nanoscale dimensions. It's established on the concept by creating functional structures by controlling corpuscles and molecules on a one-by-one basis by different physical and chemical synthesis methods. Developments in materials science and, nano biotechnology is especially forestalled to provide elevates in dental sciences and initiations in oral health-related diagnostic and therapeutical methods. Keywords: Nano Science, dentistry, Nanocomposite, Nanorobots, Nanomaterials.


MRS Bulletin ◽  
2003 ◽  
Vol 28 (12) ◽  
pp. 913-917 ◽  
Author(s):  
Dieter Richter ◽  
Dan A. Neumann

AbstractKnowledge of the dynamic dimension of materials is an extremely important ingredient for understanding their properties. Neutron scattering is uniquely capable of revealing aspects of the atomic and molecular geometry of motions over a wide range of time scales. To illustrate this fact, we give a number of examples from different areas of materials science. We discuss the diffusion of hydrogen in protonic conductors; the hydration of portland cement; and aspects of the molecular rheology of polymers, emphasizing in particular the effect of branching. All of these experiments have added important basic information to the understanding of the respective systems. With the advent of the new megawatt neutron spallation sources, the role of neutron scattering in revealing the dynamical properties of materials is expected to increase substantially.


1998 ◽  
Vol 4 (S2) ◽  
pp. 168-169
Author(s):  
D. B. Williams

Since its invention in 1968, the EDS has played an essential role in X-ray analysis of materials, at the micrometer level, in the electron probe microanalyzer (EPMA). In the EPMA, the characteristic X-ray intensity from bulk specimens is sufficient that, despite its very small collection angle, the wavelength dispersive spectrometer (WDS) can also be used. Given the excellent energy resolution of the WDS it has often been the spectrometer of choice for bulk quantitative X-ray microanalysis. Therefore, the most important role of the EDS has been in X-ray microanalysis of thin specimens in the analytical electron microscope (AEM) because, in an AEM, the limited confines of the stage mean that EDS is the only viable spectrometer. Since the pioneering work of Cliff and Lorimer in the 1970s, EDS has been the method by which all high spatial resolution X-ray microanalysis of thin foils has been performed.


Sign in / Sign up

Export Citation Format

Share Document