scholarly journals Utilization of Agro-based Adsorbents in Binary Wastewater Treatment

2021 ◽  
Vol 7 (1) ◽  
pp. 451-454
Author(s):  
Abhiram Siva Prasad Pamula ◽  
Yung-Tse Hung ◽  
Howard Hao-Che Paul

The application of agro-based adsorbents is growing in the tertiary stage of the wastewater treatment process during the presence of hazardous pollutants. Dye and coffee industries are among the major wastewater pollutant sources negatively affect aquatic ecosystems and human health. The current study attempts to treat a binary mixture of crystal violet (CV) and coffee wastewater using agro-based adsorbents such as peanut hull and onion peel. The performance and efficacy of low-cost adsorbents were evaluated using parameters, including transmittance and non-purgeable organic carbon (NPOC). Batch adsorption studies were conducted to optimize both the adsorbent size and dosage that affect the treatment process. The experimental data obtained from the experiment were analyzed to understand whether Langmuir or Freundlich best fits the treatment process's experimental data. It was observed that Langmuir isotherm seems to fit experimental data using peanut hull and Freundlich isotherm using onion peel. The kinetics of the adsorption process appears to follow the pseudo-first-order kinetic model. The regression coefficient value of onion peel was 0.91, and uptake was 58.14 mg/g. Similarly, using the peanut hull, the regression coefficient was 0.99, and uptake was 57.47 mg/g. It seems that peanut hull appears to perform better as a low-cost adsorbent compared to onion peel. The adsorption capacity increased with the increasing dosage of low-cost adsorbent (peanut hull) until the adsorbent size of 0.6-0.425 mm and steadily decreased after that.

2019 ◽  
Vol 5 (4) ◽  
pp. 76
Author(s):  
Nogueira ◽  
Matos ◽  
Bernardo ◽  
Pinto ◽  
Lapa ◽  
...  

A char produced from spent tire rubber showed very promising results as an adsorbent of Remazol Yellow (RY) from aqueous solutions. Spent tire rubber was submitted to a pyrolysis process optimized for char production. The obtained char was submitted to chemical, physical, and textural characterizations and, subsequently, applied as a low-cost adsorbent for dye (RY) removal in batch adsorption assays. The obtained char was characterized by relatively high ash content (12.9% wt), high fixed-carbon content (69.7% wt), a surface area of 69 m2/g, and total pore volume of 0.14 cm3/g. Remazol Yellow kinetic assays and modelling of the experimental data using the pseudo-first and pseudo-second order kinetic models demonstrated a better adjustment to the pseudo-first order model with a calculated uptake capacity of 14.2 mg RY/g char. From the equilibrium assays, the adsorption isotherm was fitted to both Langmuir and Freundlich models; it was found a better fit for the Langmuir model to the experimental data, indicating a monolayer adsorption process with a monolayer uptake capacity of 11.9 mg RY/g char. Under the experimental conditions of the adsorption assays, the char presented positive charges at its surface, able to attract the deprotonated sulfonate groups (SO3−) of RY; therefore, electrostatic attraction was considered the most plausible mechanism for dye removal.


Author(s):  
Saisantosh Vamshi Harsha MADIRAJU ◽  
Yung-Tse HUNG ◽  
Howard Hao-Che PAUL

This study was undertaken to determine the treatment a binary mixture of dye wastewater (containing Naphthol Green B) and the sugar industry wastewater for removal of color. The specific treatment in the current research consists of adsorption using low-cost adsorbents and microfiltration using Whatman-41 microfilters. Considerations of this treatment process are to take the samples using batch adsorption and avoid coagulation with further dilution. Numerous runs are made, with the ideal waste samples prepared in the laboratory. As a 1st step in the study, different dye concentrations are considered using different concentrations of sugar wastewater. Samples are treated with 3 different Agro-based low-cost adsorbents (orange peel, peanut hull, and Powdered Activated Carbon (PAC)). Transmittance values for Naphthol Green B after treatment with orange peel and peanut hull are 83.12 % and 76.98 % respectively. Peanut hull has the highest transmittance of 76.98 % with < 425 µm size. Orange peel contributes to the highest transmittance of 83.12 % with a 2 g dosage. The values of transmittance after treatment with PAC are taken as the datum for the comparison of adsorption performance after treatment using orange peel and peanut hull. Peanut hull has the highest Non-Purgeable Organic Carbon (NPOC) measurement of 37.86 mg/L when mixed with 600 ppm of sugar wastewater. Similarly, when mixed with 600 ppm of sugar wastewater, orange peel contributes to the NPOC value of 35.06 mg/L. These treated samples using low-cost adsorbents can be considered as pre-treated wastewater that can be sent to municipal wastewater treatment plants. HIGHLIGHTS Orange Peel and Peanut Hull are the Agro-based low-cost adsorbents for color removal Wastewater treated with Peanut Hull has high Non-Purgeable Organic Carbon measurement Peanut hull has the highest transmittance of 76.98 % with < 425µm size Orange peel contributes to the highest transmittance of 83.12 % with a 2 g dosage Powdered Activated Carbon is considered as a reference adsorbent in this study GRAPHICAL ABSTRACT


Author(s):  
Carlos Eduardo Zacarkim ◽  
Luciano Caetano De Oliveira ◽  
Nayara Symanski ◽  
Fernando Rodolfo Espinoza Quinõnes ◽  
Soraya Moreno Palácio ◽  
...  

The study was based on a surface flow wetland system, using the macrophyte Eicchornia crassipes. The use of wetlands as an alternative in the wastewater treatment process has been employed due to the handling and simple technology, addition to the low cost compared to conventional systems. Three hydraulic retention times, they are 4, 6 and 8 days were analyzed. In general the system showed significant results in relation to removals of nutrients for all TRH reviews, where the hydraulic retention time of 6 days achieved the best performance. The proposed system achieved 79.91% reductions for COD, 83.51% of Total Phosphorus, Total Nitrogen 67.93%, 87.7% chromium and 52% Sulfur.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Arthur Omran ◽  
Ronald Baker ◽  
Charles Coughlin

Sucralose was developed as a low-cost artificial sweetener that is nonmetabolizable and can withstand changes in pH and temperature. It is not degraded by the wastewater treatment process and thus has been found in waste water, estuaries, rivers and the Gulf Stream. Since the molecule can withstand heat, acidification, and microbial degradation, it is accumulating in the environment. The highest concentration of environmental sucralose detected to date is 300 ng/L. Our lab has isolated six bacterial species from areas that have been exposed to sucralose. We then cultured these isolates in the presence of sucralose looking for potential sucralose metabolism or growth acceleration. Instead we found something very interesting, bacteriostatic effects exhibited on all six isolates. This inhibition was directly proportional to the concentration of sucralose exposure. The efficiency of the growth inhibition seemed to be species specific, with various concentrations inhibiting each organism differently.


1995 ◽  
Vol 31 (5-6) ◽  
pp. 85-89 ◽  
Author(s):  
S. J. Turner ◽  
G. D. Lewis

Over a 12 month period F-specific bacteriophages, faecal coliforms and enterococci were compared as microbial indicator organisms for the quality of a wastewater treatment (oxidation pond) system. Results suggest that enterococci may be the most useful indicator for oxidation pond systems.


Sign in / Sign up

Export Citation Format

Share Document