scholarly journals Visible Light Responsive Nickel and Sulphur Co-Doped TiO2 Mesoporous Nanomaterial for the Degradation of Orange-II Dye and Antibacterial Activity on Escherichia coli

2018 ◽  
Vol 4 (5) ◽  
pp. 555-559
Author(s):  
K.V. Divya Lakshmi ◽  
T. Siva Rao

Nickel and sulfur co-doped TiO2 photocatalyst were prepared by using sol-gel method with dopants precursors of nickel nitrate and thiourea. Prepared samples were characterized by XRD, UV-Vis-DRS, TEM, BET, FT-IR and SEM-EDX. These characterization and experimental results revealed that there is a formation of anatase phase, decreased band gap 2.62 eV for NIST-2, small particle size 7.3 nm and high surface area 142.62 m2/g. The FT-IR frequency shift for Ti-O-Ti was observed from 569 cm-1 to 460-560 cm-1 for co-doped TiO2. The efficiency of photocatalytic and antibacterial was evaluated by degradation of Orange-II dye and Escherichia coli (MTCC-443) respectively. The complete degradation of Orange-II was achieved in 120 min at optimum reaction parameters for NIST-2 at pH-3, catalyst dosage-100 mg/L and initial dye concentration at 10 mg/L.

Photocatalyst has been extensive interest because of it’s new innovation to the reduce the contamination in the environment. A straight forward and economical procedure has been employed by sol-gel technique for the co-doping of Mn2+ and Ni2+ into TiO2 . The co-doped and undoped photocatalysts were described by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray Spectroscopy (EDX), Fourier transform infrared spectroscopy (FT-IR), UV-Visible Diffused Reflectance Spectroscopy (UV Vis-DRS), Transmission electron Microscopy (TEM) and Brunauer-Emmett-Teller (BET). The portrayal results shows that anatase and rutile mixed phase was observed for some co-doped nanocatalysts and the remaining catalysts exhibits anatase phase only. It was observed by FT-IR that the shifting of frequency of Ti-O-Ti in the catalysts was seen due to substitutional doping of Mn and Ni by replace Ti and O, further the photocatalysts shows rough morphology, irregular shape of particle with size (6.5nm) and having high surface area (135.70 m2/g), less band energy (2.7 eV). The photocatalytic action of these materials was assessed by the degradation of Allura red (AR) as a contaminant. The results shows that AR has degraded within 60 minutes at doping concentrations 0.25 Wt% of Mn2+ion and 1.0 Wt% of Ni2+ ion in TiO2 (NMT2) at an optimum reaction parameters pH-4, catalyst dose 0.070g/L and at AR initial dye concentration 0.010g/L.


2007 ◽  
Vol 43 (3) ◽  
pp. 299-304 ◽  
Author(s):  
Pradeepan Periyat ◽  
K. V. Baiju ◽  
P. Mukundan ◽  
P. Krishna Pillai ◽  
K. G. K. Warrier

2014 ◽  
Vol 69 (5) ◽  
Author(s):  
Ooi Yee Khai ◽  
Leny Yuliati ◽  
Siew Ling Lee

New visible light driven photocatalysts of 1 mol% Cr doped TiO2 supported on TUD-1 have been successfully synthesized. The Cr-TiO2/xTUD-1 (x = 10, 20, 30, 40 and 50) photocatalysts were prepared via surfactant-free sol-gel method followed by wet impregnation procedures. XRD analysis revealed that both TiO2 and Cr were incorporated in the highly porous siliceous matrix. FTIR analysis showed the existence of Si-O-Ti in all the materials. As observed, tetrahedral-coordinated Ti species were dominant in Cr-TiO2/10TUD-1, Cr-TiO2/20TUD-1 and Cr-TiO2/30TUD-1. Meanwhile, octahedral- coordinated Ti species were the dominant species in Cr-TiO2/40TUD-1 and Cr-TiO2/50TUD-1. It has been demonstrated that the amount of TUD-1 as photocatalyst support affected the wavelength response and the bandgap energy of the resulting materials. All the materials have bandgap energy of ~2.9 eV. The photocatalytic performance of the synthesized materials was tested out in dye photodegradation under visible light irradiation at 298 K for 5 hours. Results showed that all Cr-TiO2/TUD-1 materials had higher photocatalytic activity than that of Cr-TiO2. This could be explained by the high surface area and porosity provided by TUD-1 in enhancing the adsorption and diffusivities of the dye molecules, hence leading to the promising photocatalytic activity. Among the materials prepared, Cr-TiO2/30TUD-1 appeared as the most superior photocatalyst which gave the highest dye photodegradation.


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Sana Ahmad ◽  
Anam Nazir ◽  
Tousif Hussain

Titanium dioxide nanoparticles were prepared by a modified sol-gel route. Titanium butoxide was used as precursor and nebulizer was used for a fine spray of particles. The prepared powders were characterized by FT-IR, SEM, XRD, and TGA-DTA methods. The results indicated that nanoparticles with small size and high surface area were synthesized. XRD result indicated that TiO2 nanoparticles were obtained in pure anatase crystalline form with a crystallite size of 40 nm. The catalytic activity of as-synthesized nanoparticles was tested for the degradation of formic acid and toluene.


2016 ◽  
Vol 720 ◽  
pp. 252-256
Author(s):  
Nadia Mohammed Elmassalami Ayad ◽  
Andre Ben Hur da Silva Figueiredo ◽  
Wilma de Araujo Gonzalez ◽  
Daniel Navarro da Rocha ◽  
Rubens Lincoln Santana Blazutti Marçal ◽  
...  

Bioactive glasses have widely used in biomedical applications such as bone filler due to their excellent biocompatibility, bioactivity and osteoconduction characteristics. In this work, a silicate-rich glass was synthesized by the sol-gel method with 60% SiO2 – 30%CaO – 10% MgO composition where fumed silica acts as the silica precursor. This new method was hypothesized to reduce the gel formation time, due to the high surface area of the fumed silica. In addition, this would presumably increase the nanoporosity of the glass. For comparison purposes, we used a glass of the same composition, but with the conventional silica precursor, tetraethyl orthosilicate (TEOS), through the sol gel method. Both were heat treated at 450°C. FT-IR analysis before and after heat treatment at 450°C showed the presence of nitrate groups, especially in the TEOS samples. This is consistent with the more hygroscopic aspect of those samples. The fumed silica samples had significantly less pronounced peaks corresponding to the nitrate groups, consistent with the more porous structure and the less hygroscopic aspect. The fumed silica samples indeed had a lower gelling time and showed similar results obtained by XRD and FT-IR analyses, showing that the use of fumed silica is viable and advantageous in the glass synthesis by the sol-gel process


Different weight percentages (0.25-1.00 wt%) of Nitrogen (Non-Metal) and Manganese (Metal) co-doped nano titania were synthesized by sol-gel method and characterized by XRD, UV-vis.DRS, FT-IR, XPS, SEM and TEM. The XRD results has shown that all the prepared catalysts are in anatase phase indicating that co-doping of N and Mn did not affect the crystal structure of TiO2 . From the UV-vis.DRS spectra a significant absorption shift towards visible region was noticed in N and Mn co-doped TiO2 and their presence was confirmed by XPS and FT-IR results. SEM and TEM results showed spherical nanoparticles with average particle size of 9 nm. Photocatalytic efficiency of synthesized nano materials was tested on non-biodegradable organophosphorous pesticide, Malathion under visible light irradiation. The effect of dopant concentration, pH, catalyst dosage, and initial pesticide concentration on photocatalytic degradation of malathion was studied and optimum conditions were established. Among the synthesized samples 0.50 wt% N & 1.00 wt% Mn-TiO2 exhibited best photocatalytic performance. Photoluminiscent spectroscopy (PL) was used to examine the rate of production of oxidative species, hydroxyl radicals which play key role in photocatalytic degradation.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3874 ◽  
Author(s):  
Abderrahim El Mragui ◽  
Yuliya Logvina ◽  
Luís Pinto da Silva ◽  
Omar Zegaoui ◽  
Joaquim C.G. Esteves da Silva

Pure TiO2 and Fe- and Co-doped TiO2 nanoparticles (NPs) as photocatalysts were synthesized using wet chemical methods (sol-gel + precipitation). Their crystalline structure and optical properties were analyzed using X-ray diffraction (XRD), Raman spectroscopy and Fourier-transform infrared (FTIR) spectroscopy, ultraviolet-visible light (UV-Vis) diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) spectroscopy. The photocatalytic activity of the synthesized nanoparticles was evaluated through degradation of carbamazepine (CBZ) under UV-A and visible-light irradiations. The XRD and Raman analyses revealed that all synthesized nanomaterials showed only the anatase phase. The DRS results showed that the absorption edge was blue-shifted for Fe-doped TiO2 NPs. The decrease in charge recombination was evidenced from the PL investigation for both Co-doped and Fe-doped TiO2 nanomaterials. An enhancement in photocatalytic degradation of carbamazepine in aqueous suspension under both UV-A light and visible-light irradiations was observed for Fe-doped Titania NPs by comparison with pure TiO2. These results suggest that the doping cations could suppress the electron/hole recombination. Therefore, the photocatalytic activity of TiO2-based nanomaterials was enhanced.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 103
Author(s):  
Nataliya Babayevska ◽  
Łucja Przysiecka ◽  
Grzegorz Nowaczyk ◽  
Marcin Jarek ◽  
Martin Järvekülg ◽  
...  

In this study, GNF@ZnO composites (gelatin nanofibers (GNF) with zinc oxide (ZnO) nanoparticles (NPs)) as a novel antibacterial agent were obtained using a wet chemistry approach. The physicochemical characterization of ZnO nanoparticles (NPs) and GNF@ZnO composites, as well as the evaluation of their antibacterial activity toward Gram-positive (Staphyloccocus aureus and Bacillus pumilus) and Gram-negative (Escherichia coli and Pseudomonas fluorescens) bacteria were performed. ZnO NPs were synthesized using a facile sol-gel approach. Gelatin nanofibers (GNF) were obtained by an electrospinning technique. GNF@ZnO composites were obtained by adding previously produced GNF into a Zn2+ methanol solution during ZnO NPs synthesis. Crystal structure, phase, and elemental compositions, morphology, as well as photoluminescent properties of pristine ZnO NPs, pristine GNF, and GNF@ZnO composites were characterized using powder X-ray diffraction (XRD), FTIR analysis, transmission and scanning electron microscopies (TEM/SEM), and photoluminescence spectroscopy. SEM, EDX, as well as FTIR analyses, confirmed the adsorption of ZnO NPs on the GNF surface. The pristine ZnO NPs were highly crystalline and monodispersed with a size of approximately 7 nm and had a high surface area (83 m2/g). The thickness of the pristine gelatin nanofiber was around 1 µm. The antibacterial properties of GNF@ZnO composites were investigated by a disk diffusion assay on agar plates. Results show that both pristine ZnO NPs and their GNF-based composites have the strongest antibacterial properties against Pseudomonas fluorescence and Staphylococcus aureus, with the zone of inhibition above 10 mm. Right behind them is Escherichia coli with slightly less inhibition of bacterial growth. These properties of GNF@ZnO composites suggest their suitability for a range of antimicrobial uses, such as in the food industry or in biomedical applications.


2012 ◽  
Vol 217-219 ◽  
pp. 857-861 ◽  
Author(s):  
Xiao Ling Guo ◽  
Xiang Dong Wang ◽  
Feng He

N-doped mesoporous TiO2 with high surface area and crystallinity were synthesized by sol-gel method using polyacrylamide (PAM) and polyethylene glycol (PEG) as the complex templates. The resulting materials were characterized by XRD, TEM, N2 adsorption-desorption, and UV-Vis spectroscopy. It is found that when the weight ratio of PAM and PEG is 1:4, the sample, prepared at 600 °C in nitrogen and at 500 °C in air, is anatase phase and has high surface area and crystallinity. The particle size and pore size of the sample are about 10 nm and 17 nm respectively. Compared with that of the undoped mesoporous TiO2, the absorption band edges of N-doped samples exhibit an evident red-shift. The results of the photocatalytic degradation of methyl orange (MO) show that N-doped sample appears to have higher photocatalytic activity under visible light than undoped sample.


2014 ◽  
Vol 31 (7) ◽  
pp. 435-446 ◽  
Author(s):  
Javed Ali Khan ◽  
Changseok Han ◽  
Noor S. Shah ◽  
Hasan M. Khan ◽  
Mallikarjuna N. Nadagouda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document