MODELING OF MIXTURE FORMATION AND COMBUSTION PROCESSES IN DIESEL ENGINE USING A DETAILED KINETIC MECHANISM OF FUEL OXIDATION

2018 ◽  
Vol 11 (2) ◽  
pp. 88-98
Author(s):  
S. S. Sergeev ◽  
◽  
S. M. Frolov ◽  
V. Ya. Basevich ◽  
B. Basara ◽  
...  
Author(s):  
Lei Zhou ◽  
Maozhao Xie ◽  
Ming Jia ◽  
Junrui Shi

In the regenerative engine, effective heat exchange and recurrence between gas and solid can be achieved by the reciprocating movement of a porous medium regenerator in the cylinder, which considerably promotes the fuel-air mixture formation and a homogeneous and stable combustion. A two-dimensional numerical model for the regenerative engine is presented in this study based on a modified version of the engine computational fluid dynamics (CFD) software KIVA-3V. The engine was fueled with methane and a detailed kinetic mechanism was used to describe its oxidation process. The characteristics of combustion and emission of the engine were computed and analyzed under different equivalence ratios and porosities of the regenerator. Comparisons with the prototype engine without the regenerator were conducted. Results show that the regenerative engine has advantages in both combustion efficiency and pollutant emissions over the prototype engine and that using lower equivalence ratios can reduce emissions significantly, while the effect of the porosity is dependent on the equivalence ratio used.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1944
Author(s):  
Shaoji Chen ◽  
Jie Tian ◽  
Jiangtao Li ◽  
Wangzhen Li ◽  
Zhiqing Zhang

In this paper, the effects of different diesel–methanol blends on the combustion and emission characteristics of diesel engines are investigated in terms of cylinder pressure, heat release rate, cylinder temperature, brake specific fuel consumption, thermal brake efficiency, brake power, and soot, nitrogen oxides, and carbon monoxide emissions in a four-stroke diesel engine. The corresponding three-dimensional Computational Fluid Dynamics (CFD) model was established using the Anstalt für Verbrennungskraftmaschinen List (AVL)-Fire coupled Chemkin program, and the chemical kinetic mechanism, including 135 reactions and 77 species, was established. The simulation model was verified by the experiment at 50% and 100% loads, and the combustion processes of pure diesel (D100) and diesel–methanol (D90M10, D80M20, and D70M30) were investigated, respectively. The results showed that the increase in methanol content in the blended fuel significantly improved the emission and power characteristics of the diesel engine. More specifically, at full load, the cylinder pressures increased by 0.78%, 1.21%, and 1.41% when the proportions of methanol in the blended fuel were 10%, 20%, and 30%, respectively. In addition, the power decreased by 2.76%, 5.04%, and 8.08%, respectively. When the proportion of methanol in the blended fuel was 10%, 20%, and 30%, the soot emissions were decreased by 16.45%, 29.35%, and 43.05%, respectively. Therefore, methanol content in blended fuel improves the combustion and emission characteristics of the engine.


2018 ◽  
Vol 13 (6) ◽  
pp. 51
Author(s):  
V. Bykov ◽  
V.V. Gubernov ◽  
U. Maas

The kinetic mechanism of hydrogen combustion is the most investigated combustion system. This is due to extreme importance of the mechanism for combustion processes, i.e. it is present as a sub-mechanism in all mechanisms for hydrocarbon combustion systems. Therefore, detailed aspects of hydrogen flames are still under active investigations, e.g. under elevated pressure, under conditions of different heat losses intensities and local equivalence ratios etc. For this purpose, the burner stabilized flame configuration is an efficient tool to study different aspects of chemical kinetics by varying the stand-off distance, pressure, temperature of the burner and mixture compositions. In the present work, a flat porous plug burner flame configuration is revisited. A hydrogen/air combustion system is considered with detailed molecular transport including thermo-diffusion and with 8 different chemical reaction mechanisms. Detailed numerical investigations are performed to single out the role of chemical kinetics on the loss of stability and on the dynamics of the flame oscillations. As a main outcome, it was found/demonstrated that the results of critical values, e.g. critical mass flow rate, weighted frequency of oscillations and blow-off velocity, with increasing the pressure scatter almost randomly. Thus, these parameters can be considered as independent and can be used to improve and to validate the mechanisms of chemical kinetics for the unsteady dynamics.


2020 ◽  
Vol 22 (44) ◽  
pp. 25740-25746
Author(s):  
Tam V.-T. Mai ◽  
Lam K. Huynh

The detailed kinetic mechanism of the trans-decalin + OH reaction is firstly investigated for a wide range of conditions (T = 200–2000 K & P = 0.76–76000 Torr) using the M06-2X/aug-cc-pVTZ level and stochastic RRKM-based Master equation rate model.


1972 ◽  
Vol 27 (9) ◽  
pp. 1052-1053 ◽  
Author(s):  
David J. T. Porter ◽  
Judith G. Voet ◽  
Harold J. Bright

Nitroalkanes have been found to be general reductive substrates for D-amino acid oxidase, glucose oxidase and L-amino acid oxidase. These enzymes show different specificities for the structure of the nitroalkane substrate.The stoichiometry of the D-amino acid oxidase reaction is straightforward, consisting of the production of one mole each of aldehyde, nitrite and hydrogen peroxide for each mole of nitroalkane and oxygen consumed. The stoichiometry of the glucose oxidase reaction is more complex in that less than one mole of hydrogen peroxide and nitrite is produced and nitrate and traces of 1-dinitroalkane are formed.The kinetics of nitroalkane oxidation show that the nitroalkane anion is much more reactive in reducing the flavin than is the neutral substrate. The pH dependence of flavin reduction strongly suggests that proton abstraction is a necessary event in catalysis. A detailed kinetic mechanism is presented for the oxidation of nitroethane by glucose.It has been possible to trap a form of modified flavin in the reaction of D-amino acid oxidase with nitromethane from which oxidized FAD can be regenerated in aqueous solution in the presence of oxygen.


Sign in / Sign up

Export Citation Format

Share Document