scholarly journals The leaf-feeding beetle, Cassida rubiginosa, has no impact on Carduus pycnocephalus (slender winged thistle) regardless of physical constraints on plant growth

2020 ◽  
Vol 73 ◽  
pp. 49-56
Author(s):  
Jonty Mills ◽  
Sarah Jackman ◽  
Chikako Van Koten ◽  
Michael Cripps

The leaf-feeding beetle, Cassida rubiginosa, is an oligophagous biocontrol agent capable of feeding on most species in the tribe Cardueae (thistles and knapweeds). The beetle was released in New Zealand in 2007, primarily to control Cirsium arvense (Californian thistle), with the recognition that it had potential to control multiple thistle weeds. The objective of this study was to test the impact of different densities of Cassida rubiginosa larvae (0, 50, 100, or 200 per plant) on the growth and reproductive performance of the annual thistle weed, Carduus pycnocephalus (slender winged thistle). Since the effectiveness of biocontrol agents is often enhanced when plants are stressed, different levels of growth constraint were imposed by growing the weed in different pot sizes (0.5, 1, 5, and 12 litres). We hypothesised that feeding damage by Cassida rubiginosa larvae would have a greater impact on the weed when grown in smaller pots, since root growth would be constrained, and the weed’s ability to compensate for feeding damage would be restricted. Contrary to our hypothesis, pot size had no effect on feeding damage by Cassida rubiginosa on Carduus pycnocephalus. As expected, most measures of plant performance increased with larger pot sizes, including plant height, biomass, and the number of seedheads per plant. The results of this study indicate that Cassida rubiginosa is unlikely to contribute to the control of Carduus pycnocephalus. Additional oligophagous biocontrol agents targeting the rosette stage and seed production should be considered for release in New Zealand.

2006 ◽  
Vol 36 (3) ◽  
pp. 350-357 ◽  
Author(s):  
Quentin Paynter ◽  
Nick Waipara ◽  
Paul Peterson ◽  
Shane Hona ◽  
Simon Fowler ◽  
...  

2003 ◽  
Vol 48 (4) ◽  
pp. 139-146 ◽  
Author(s):  
B. Wett ◽  
J. Alex

A separate rejection water treatment appears as a high-tech unit process which might be recommendable only for specific cases of an upgrading of an existing wastewater treatment plant. It is not the issue of this paper to consider a specific separate treatment process itself but to investigate the influence of such a process on the overall plant performance. A plant-wide model has been applied as an innovative tool to evaluate effects of the implemented sidestream strategy on the mainstream treatment. The model has been developed in the SIMBA environment and combines acknowledged mathematical descriptions of the activated sludge process (ASM1) and the anaerobic mesophilic digestion (Siegrist model). The model's calibration and validation was based on data from 5 years of operating experience of a full-scale rejection water treatment. The impact on the total N-elimination efficiency is demonstrated by detailed nitrogen mass flow schemes including the interactions between the wastewater and the sludge lane. Additionally limiting conditions due to dynamic N-return loads are displayed by the model's state variables.


Genetics ◽  
1998 ◽  
Vol 149 (1) ◽  
pp. 445-458 ◽  
Author(s):  
Nick Goldman ◽  
Jeffrey L Thorne ◽  
David T Jones

Abstract Empirically derived models of amino acid replacement are employed to study the association between various physical features of proteins and evolution. The strengths of these associations are statistically evaluated by applying the models of protein evolution to 11 diverse sets of protein sequences. Parametric bootstrap tests indicate that the solvent accessibility status of a site has a particularly strong association with the process of amino acid replacement that it experiences. Significant association between secondary structure environment and the amino acid replacement process is also observed. Careful description of the length distribution of secondary structure elements and of the organization of secondary structure and solvent accessibility along a protein did not always significantly improve the fit of the evolutionary models to the data sets that were analyzed. As indicated by the strength of the association of both solvent accessibility and secondary structure with amino acid replacement, the process of protein evolution—both above and below the species level—will not be well understood until the physical constraints that affect protein evolution are identified and characterized.


2021 ◽  
pp. 1-6
Author(s):  
Michele Connolly ◽  
Kalinda Griffiths ◽  
John Waldon ◽  
Malcolm King ◽  
Alexandra King ◽  
...  

The International Group for Indigenous Health Measurement (IGIHM) is a 4-country group established to promote improvements in the collection, analysis, interpretation and dissemination of Indigenous health data, including the impact of COVID-19. This overview provides data on cases and deaths for the total population as well as the Indigenous populations of each country. Brief summaries of the impact are provided for Canada and New Zealand. The Overview is followed by. separate articles with more detailed discussion of the COVID-19 experience in Australia and the US.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Peter Higgins ◽  
Cooper A Grace ◽  
Soon A Lee ◽  
Matthew R Goddard

Abstract Saccharomyces cerevisiae is extensively utilized for commercial fermentation, and is also an important biological model; however, its ecology has only recently begun to be understood. Through the use of whole-genome sequencing, the species has been characterized into a number of distinct subpopulations, defined by geographical ranges and industrial uses. Here, the whole-genome sequences of 104 New Zealand (NZ) S. cerevisiae strains, including 52 novel genomes, are analyzed alongside 450 published sequences derived from various global locations. The impact of S. cerevisiae novel range expansion into NZ was investigated and these analyses reveal the positioning of NZ strains as a subgroup to the predominantly European/wine clade. A number of genomic differences with the European group correlate with range expansion into NZ, including 18 highly enriched single-nucleotide polymorphism (SNPs) and novel Ty1/2 insertions. While it is not possible to categorically determine if any genetic differences are due to stochastic process or the operations of natural selection, we suggest that the observation of NZ-specific copy number increases of four sugar transporter genes in the HXT family may reasonably represent an adaptation in the NZ S. cerevisiae subpopulation, and this correlates with the observations of copy number changes during adaptation in small-scale experimental evolution studies.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 758
Author(s):  
Fiona Esam ◽  
Rachel Forrest ◽  
Natalie Waran

The influence of the COVID-19 pandemic on human-pet interactions within New Zealand, particularly during lockdown, was investigated via two national surveys. In Survey 1, pet owners (n = 686) responded during the final week of the five-week Alert Level 4 lockdown (highest level of restrictions—April 2020), and survey 2 involved 498 respondents during July 2020 whilst at Alert Level 1 (lowest level of restrictions). During the lockdown, 54.7% of owners felt that their pets’ wellbeing was better than usual, while only 7.4% felt that it was worse. Most respondents (84.0%) could list at least one benefit of lockdown for their pets, and they noted pets were engaged with more play (61.7%) and exercise (49.7%) than pre-lockdown. Many respondents (40.3%) expressed that they were concerned about their pet’s wellbeing after lockdown, with pets missing company/attention and separation anxiety being major themes. In Survey 2, 27.9% of respondents reported that they continued to engage in increased rates of play with their pets after lockdown, however, the higher levels of pet exercise were not maintained. Just over one-third (35.9%) of owners took steps to prepare their pets to transition out of lockdown. The results indicate that pets may have enjoyed improved welfare during lockdown due to the possibility of increased human-pet interaction. The steps taken by owners to prepare animals for a return to normal life may enhance pet wellbeing long-term if maintained.


2021 ◽  
pp. jech-2020-216108 ◽  
Author(s):  
Malcolm Campbell ◽  
Lukas Marek ◽  
Jesse Wiki ◽  
Matthew Hobbs ◽  
Clive E Sabel ◽  
...  

BackgroundThe COVID-19 pandemic has asked unprecedented questions of governments around the world. Policy responses have disrupted usual patterns of movement in society, locally and globally, with resultant impacts on national economies and human well-being. These interventions have primarily centred on enforcing lockdowns and introducing social distancing recommendations, leading to questions of trust and competency around the role of institutions and the administrative apparatus of state. This study demonstrates the unequal societal impacts in population movement during a national ‘lockdown’.MethodsWe use nationwide mobile phone movement data to quantify the effect of an enforced lockdown on population mobility by neighbourhood deprivation using an ecological study design. We then derive a mobility index using anonymised aggregated population counts for each neighbourhood (2253 Census Statistical Areas; mean population n=2086) of national hourly mobile phone location data (7.45 million records, 1 March 2020–20 July 2020) for New Zealand (NZ).ResultsCurtailing movement has highlighted and exacerbated underlying social and spatial inequalities. Our analysis reveals the unequal movements during ‘lockdown’ by neighbourhood socioeconomic status in NZ.ConclusionIn understanding inequalities in neighbourhood movements, we are contributing critical new evidence to the policy debate about the impact(s) and efficacy of national, regional or local lockdowns which have sparked such controversy.


Sign in / Sign up

Export Citation Format

Share Document