scholarly journals Security Enhancement of IoT and Fog Computing Via Blockchain Applications

Author(s):  
Ramadan T. H. Hasan ◽  
◽  
Siddeeq Y. Ameen ◽  

Blockchain technology is now becoming highly appealing to the next generation because it is better tailored to the information age. Blockchain technologies can also be used in the Internet of Things (IoT) and fog computing. The development of IoT and Fog Computing technologies in different fields has resulted in a major improvement in distributed networks. Blockchain technology is now becoming highly appealing to the next generation because it is better tailored to the information age. Blockchain technologies can also be used in IoT and fog computing. The blockchain principle necessitates a transparent data storage mechanism for storing and exchanging data and transactions throughout the network. In this paper, first, we explained blockchain, its architecture, and its security. Then we view Blockchain application in IoT security. Then we explained Fog computing, Generic Security Requirements for Fog Computing, and we also discussed Blockchain applications that enhance Fog Computing Security. Finally, we conduct a review of some recent literature on using blockchain applications to improve IoT and fog computing security and compare the methods proposed in the literature.

2020 ◽  
Author(s):  
Yanhui Liu ◽  
Jianbiao Zhang ◽  
Jing Zhan

Abstract With the development of the Internet of Things (IoT) field, more and more data are generated by IoT devices and transferred over the network. However, a large amount of IoT data is sensitive, and the leakage of such data is a privacy breach. The security of sensitive IoT data is a big issue, as the data is shared over an insecure network channel. Current solutions include symmetric encryption and access controls to secure the data transfer, but they have some drawbacks such as a single point of failure. Blockchain is a promising distributed ledger technology that can prevent the malicious tampering of data, offering reliable data storage. This paper proposes a distributed access control system based on blockchain technology to secure IoT data. The proposed mechanism is based on fog computing and the concept of the alliance chain. This method uses mixed linear and nonlinear spatiotemporal chaotic systems (MLNCML) and the least significant bit (LSB) to encrypt the IoT data on an edge node and then upload the encrypted data to the cloud. The proposed mechanism can solve the problem of a single point of failure of access control by providing the dynamic and fine-grained access control for IoT data. The experimental results of this method demonstrated that it can protect the privacy of IoT data efficiently.


2020 ◽  
Author(s):  
Tanweer Alam

<p>The fog computing is the emerging technology to compute, store, control and connecting smart devices with each other using cloud computing. The Internet of Things (IoT) is an architecture of uniquely identified interrelated physical things, these physical things are able to communicate with each other and can transmit and receive information. <a>This research presents a framework of the combination of the Internet of Things (IoT) and Fog computing. The blockchain is also the emerging technology that provides a hyper, distributed, public, authentic ledger to record the transactions. Blockchains technology is a secured technology that can be a boon for the next generation computing. The combination of fog, blockchains, and IoT creates a new opportunity in this area. In this research, the author presents a middleware framework based on the blockchain, fog, and IoT. The framework is implemented and tested. The results are found positive. </a></p>


Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2110
Author(s):  
Desire Ngabo ◽  
Dong Wang ◽  
Celestine Iwendi ◽  
Joseph Henry Anajemba ◽  
Lukman Adewale Ajao ◽  
...  

The recent developments in fog computing architecture and cloud of things (CoT) technology includes data mining management and artificial intelligence operations. However, one of the major challenges of this model is vulnerability to security threats and cyber-attacks against the fog computing layers. In such a scenario, each of the layers are susceptible to different intimidations, including the sensed data (edge layer), computing and processing of data (fog (layer), and storage and management for public users (cloud). The conventional data storage and security mechanisms that are currently in use appear to not be suitable for such a huge amount of generated data in the fog computing architecture. Thus, the major focus of this research is to provide security countermeasures against medical data mining threats, which are generated from the sensing layer (a human wearable device) and storage of data in the cloud database of internet of things (IoT). Therefore, we propose a public-permissioned blockchain security mechanism using elliptic curve crypto (ECC) digital signature that that supports a distributed ledger database (server) to provide an immutable security solution, transaction transparency and prevent the patient records tampering at the IoTs fog layer. The blockchain technology approach also helps to mitigate these issues of latency, centralization, and scalability in the fog model.


2020 ◽  
Vol 42 (3) ◽  
pp. 8-11
Author(s):  
Bonnie Lawlor

AbstractI first heard of blockchain technology at a conference in 2017 when Christopher Wilmer, Assistant Professor at the University of Pittsburgh and Managing Editor of Ledger, [1] gave a presentation on the technology. While he did mention Bitcoin and other cryptocurrencies with which the technology was originally associated, Wilmer’s talk explained how his journal uses blockchain for proof-of-publication. He commented that as a data-storage mechanism, “blockchains are well-suited to be used in scholarly publishing because they are extremely resilient, tamper-proof, practically indestructible databases; there is no single point of failure or cost of operation; and there is an incontrovertible proof-of-publication date, even across countries and institutions whose incentives are not aligned (which is sometimes a point of contention for scientists racing to discover cure/new theorem/etc.)” [2].


Author(s):  
Anchitaalagammai J. V. ◽  
Kavitha S. ◽  
Murali S. ◽  
Hemalatha P. R. ◽  
Subanachiar T.

Blockchains are shared, immutable ledgers for recording the history of transactions. They substitute a new generation of transactional applications that establish trust, accountability, and transparency. It enables contract partners to secure a deal without involving a trusted third party. The internet of things (IoT) is rapidly changing our society to a world where every “thing” is connected to the internet, making computing pervasive like never before. It is increasingly becoming a ubiquitous computing service, requiring huge volumes of data storage and processing. The stable growth of the internet of things (IoT) and the blockchain technology popularized by cryptocurrencies has led to efforts to change the centralized nature of the IoT. Adapting the blockchain technology for use in the IoT is one such efforts. This chapter focuses on blockchain-IoT research directions and to provide an overview of the importance of blockchain-based solutions for cloud data manipulation in IoT.


2017 ◽  
Vol 23 (4) ◽  
pp. 552-557 ◽  
Author(s):  
Matteo Monti ◽  
Steen Rasmussen

We summarize the results and perspectives from a companion article, where we presented and evaluated an alternative architecture for data storage in distributed networks. We name the bio-inspired architecture RAIN, and it offers file storage service that, in contrast with current centralized cloud storage, has privacy by design, is open source, is more secure, is scalable, is more sustainable, has community ownership, is inexpensive, and is potentially faster, more efficient, and more reliable. We propose that a RAIN-style architecture could form the backbone of the Internet of Things that likely will integrate multiple current and future infrastructures ranging from online services and cryptocurrency to parts of government administration.


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2395 ◽  
Author(s):  
Yongjun Ren ◽  
Yan Leng ◽  
Fujian Zhu ◽  
Jin Wang ◽  
Hye-Jin Kim

Wireless body area networks (WBANs) are expected to play a vital role in the field of patient-health monitoring shortly. They provide a convenient way to collect patient data, but they also bring serious problems which are mainly reflected in the safe storage of the collected data. The privacy and security of data storage in WBAN devices cannot meet the needs of WBAN users. Therefore, this paper adopts blockchain technology to store data, which improves the security of the collected data. Moreover, a storage model based on blockchain in WBAN is proposed in our solution. However, blockchain storage brings new problems, for example, that the storage space of blockchain is small, and the stored content is open to unauthorized attackers. To solve the problems above, this paper proposed a sequential aggregate signature scheme with a designated verifier (DVSSA) to ensure that the user’s data can only be viewed by the designated person and to protect the privacy of the users of WBAN. In addition, the new signature scheme can also compress the size of the blockchain storage space.


Author(s):  
Yehia Ibrahim Alzoubi ◽  
Ahmad Al-Ahmad ◽  
Ashraf Jaradat

<span lang="EN-US">Due to the expansion growth of the IoT devices, Fog computing was proposed to enhance the low latency IoT applications and meet the distribution nature of these devices. However, Fog computing was criticized for several privacy and security vulnerabilities. This paper aims to identify and discuss the security challenges for Fog computing. It also discusses blockchain technology as a complementary mechanism associated with Fog computing to mitigate the impact of these issues. The findings of this paper reveal that blockchain can meet the privacy and security requirements of fog computing; however, there are several limitations of blockchain that should be further investigated in the context of Fog computing.</span>


2020 ◽  
Author(s):  
Tanweer Alam

<p>The fog computing is the emerging technology to compute, store, control and connecting smart devices with each other using cloud computing. The Internet of Things (IoT) is an architecture of uniquely identified interrelated physical things, these physical things are able to communicate with each other and can transmit and receive information. <a>This research presents a framework of the combination of the Internet of Things (IoT) and Fog computing. The blockchain is also the emerging technology that provides a hyper, distributed, public, authentic ledger to record the transactions. Blockchains technology is a secured technology that can be a boon for the next generation computing. The combination of fog, blockchains, and IoT creates a new opportunity in this area. In this research, the author presents a middleware framework based on the blockchain, fog, and IoT. The framework is implemented and tested. The results are found positive. </a></p>


Sign in / Sign up

Export Citation Format

Share Document