scholarly journals Geological and Petrographic Factors Affecting Formation of Active Landslides in the North of Biga Peninsula, NW Turkey

2021 ◽  
Vol 8 (4) ◽  
pp. 498-506
Author(s):  
Oya ERENOĞLU
Clay Minerals ◽  
2008 ◽  
Vol 43 (2) ◽  
pp. 281-315 ◽  
Author(s):  
Ö. I. Ece ◽  
P. A. Schroeder ◽  
M. J. Smilley ◽  
J. M. Wampler

AbstractThe Biga Peninsula of NW Turkey is host to six major halloysite deposits in the Go¨nen, Yenice and Balya districts. Mineralization took place in areas of Permian limestone blocks where the Triassic Karakaya Complex is in contact with early Miocene calc-alkaline volcanic rocks. Hypogene halloysite mineralization was controlled by the intersection of minor faults in the vicinity of clay deposits. During the Pleistocene, activity of the North Anatolian Fault (NAF) brought ascending geothermal solutions through the fault zones to the surface, which led to hydrothermal alteration and halloysite formation. N-MORB normalized element values for each halloysite deposit and the volcanic rocks suggest genetic links. Alunite and halloysite were formed in the Turplu area where upwelling hydrothermal waters contained major H2S and SO2acids. Only halloysite mineralization occurred in outflow areas of the same fossil geothermal field.Pyrite and alunite samples from the Turplu deposits have δ34S values of 0.6–1.8% and 4.8–7.9%, respectively, with values for gypsum of 3.1–3.5%. The δ34S values of pyrite suggest that local meteoric waters had partially mixed with the dominant fluid during the closure stage of fossil hydrothermal activities. The range of δD values of halloysite samples from Turplu is –58.4 to –68.6%. The δ18O values for halloysite are in the range 16.7–18.1%. All halloysite deposits in the study areas are either overlying or adjacent to limestone blocks, and these provide excellent drainage for the discharging geothermal waters. Subsurface drainage systems in the karstic environment and the SO2-bearing thermal waters indicate the importance of acidic waters and the continuous leaching of elements in forming relatively pure hydrated halloysite. A steam-heated dissolution-precipitation model is proposed for the occurrence of all halloysite and alunite deposits. Sulphur gases (H2S-SO2) of hypogene origin rose from deep in the fault zone to the surface where they encountered oxygenated groundwater at the water table. The occurrence of H2SO4in this hydrothermal system enhanced the acidity of geothermal waters provoking advanced argillic alteration. Hypogene alunite deposits also have large P2O5contents, suggesting a parent material with a magmatic origin deeper than the alkaline tuffs. Halloysite is a fast-forming metastable precursor to kaolinite.


2021 ◽  
Vol 13 (8) ◽  
pp. 4203
Author(s):  
Bin Du ◽  
Ying Wang ◽  
Jiaxin He ◽  
Wai Li ◽  
Xiaohong Chen

Based on the fundamental concept of sustainable development, this study empirically analyzes the spatio-temporal characteristics, formation mechanisms and obstacle factors of the urban-rural integration of shrinking cities in China, from 2008 to 2018. The conclusions are as follows: the overall level of the urban-rural integration of shrinking cities in China is low; the internal differences of urban-rural integration are also small, and the changes are slow. Next, the space difference is high in the east and low in the west, high in the south and low in the north. Moreover, differences exist among different levels of urban agglomerations. Urban economic efficiency, urban resources and environment, urban social equity and rural economic efficiency are the main factors affecting the urban-rural integration of shrinking cities in China. Urban and rural economic efficiency are the two most prominent shortcomings that restrict the urban-rural integration of shrinking cities. The spatial resistance mode of each city is more than the two-system resistance; the main resistance of shrinking cities with a higher level of urban-rural integration also comes from the non-economic field. This study expands the research scope that up till now has ignored the discussion of urban-rural issues in the research of shrinking cities at home and abroad, and provides practical guidance for the sustainable development of shrinking cities in China.


2021 ◽  
Author(s):  
Yacine Benjelloun ◽  
Julia De Sigoyer ◽  
Stéphane Garambois ◽  
Julien Carcaillet ◽  
Yann Klinger

2021 ◽  
Author(s):  
Esref Yalcinkaya ◽  
Marco Bohnhoff ◽  
Patricia Martinez-Garzon ◽  
Ethem Görgün ◽  
Ali Pınar ◽  
...  

<p>Imaging and characterizing transform fault sections that are capable to produce large earthquakes is crucial for evaluating seismic hazard and subsequent risk for nearby population centers. The Marmara Fault near the megacity of Istanbul is one of the best defined seismic gaps in the world and its complexity is captured by seismological, geodetic and geological data. A local dense seismic array (MONGAN) provides a high resolution data set allowing to image the Ganos fault separating two different geological units in the western Marmara region. First results of the waveform analysis from this array present systematic early-phase arrivals at the seismic stations located on the northern block of the Ganos fault which comprises geological units including older and more compact materials than that of the southern block. This difference in the arrival times causes the earthquake epicenters to shift further north than the real locations. In this preliminary results, the early-arrivals will be evaluated according to source azimuths and distances, and possible earth models and wave paths will be discussed. The results have implications for rupture directivity during future earthquakes as input for hazard and risk models for the Marmara region.</p>


Author(s):  
Xiangxue Zhang ◽  
Changxiu Cheng

In recent years, air pollution caused by PM2.5 in China has become increasingly severe. This study applied a Bayesian space–time hierarchy model to reveal the spatiotemporal heterogeneity of the PM2.5 concentrations in China. In addition, the relationship between meteorological and socioeconomic factors and their interaction with PM2.5 during 2000–2018 was investigated based on the GeoDetector model. Results suggested that the concentration of PM2.5 across China first increased and then decreased between 2000 and 2018. Geographically, the North China Plain and the Yangtze River Delta were high PM2.5 pollution areas, while Northeast and Southwest China are regarded as low-risk areas for PM2.5 pollution. Meanwhile, in Northern and Southern China, the population density was the most important socioeconomic factor affecting PM2.5 with q values of 0.62 and 0.66, respectively; the main meteorological factors affecting PM2.5 were air temperature and vapor pressure, with q values of 0.64 and 0.68, respectively. These results are conducive to our in-depth understanding of the status of PM2.5 pollution in China and provide an important reference for the future direction of PM2.5 pollution control.


2017 ◽  
Vol 6 (4) ◽  
pp. 416
Author(s):  
Abdullakh Abdulgamidovich Mallakurbanov ◽  
Elena Vladimirovna Baboshina ◽  
Ilmira Abduragimovna Abdulaeva ◽  
Irade Safaratdinovna Guseinova

Sign in / Sign up

Export Citation Format

Share Document