scholarly journals Estimation of quality of superficial waters of river Sаn basin

Author(s):  
T. Gurska

On the basis of generalization and systematization of the results of the regime observations made by the services of superficial waters quality monitoring has been made the ecological estimation of the water quality within Ukrainian part of river Sjan basin. Key words: river basin, limiting permissible concentration, pollution coefficient, estimation of waters quality.

Author(s):  
T. Gurska

On the basis of generalization and systematization of the results of the regime observations made by the services of superficial waters quality monitoring has been made the ecological estimation of the water quality within Ukrainian part of river Shklo basin. Results of ecological estimation of waters quality is shown on the map. Key words: river basin, limiting permissible concentration, pollution coefficient, complex estimation of waters quality.


Author(s):  
Jose Simmonds ◽  
Juan A. Gómez ◽  
Agapito Ledezma

This article contains a multivariate analysis (MV), data mining (DM) techniques and water quality index (WQI) metrics which were applied to a water quality dataset from three water quality monitoring stations in the Petaquilla River Basin, Panama, to understand the environmental stress on the river and to assess the feasibility for drinking. Principal Components and Factor Analysis (PCA/FA), indicated that the factors which changed the quality of the water for the two seasons differed. During the low flow season, water quality showed to be influenced by turbidity (NTU) and total suspended solids (TSS). For the high flow season, main changes on water quality were characterized by an inverse relation of NTU and TSS with electrical conductivity (EC) and chlorides (Cl), followed by sources of agricultural pollution. To complement the MV analysis, DM techniques like cluster analysis (CA) and classification (CLA) was applied and to assess the quality of the water for drinking, a WQI.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Prasad M. Pujar ◽  
Harish H. Kenchannavar ◽  
Raviraj M. Kulkarni ◽  
Umakant P. Kulkarni

AbstractIn this paper, an attempt has been made to develop a statistical model based on Internet of Things (IoT) for water quality analysis of river Krishna using different water quality parameters such as pH, conductivity, dissolved oxygen, temperature, biochemical oxygen demand, total dissolved solids and conductivity. These parameters are very important to assess the water quality of the river. The water quality data were collected from six stations of river Krishna in the state of Karnataka. River Krishna is the fourth largest river in India with approximately 1400 km of length and flows from its origin toward Bay of Bengal. In our study, we have considered only stretch of river Krishna flowing in state of Karnataka, i.e., length of about 483 km. In recent years, the mineral-rich river basin is subjected to rapid industrialization, thus polluting the river basin. The river water is bound to get polluted from various pollutants such as the urban waste water, agricultural waste and industrial waste, thus making it unusable for anthropogenic activities. The traditional manual technique that is under use is a very slow process. It requires staff to collect the water samples from the site and take them to the laboratory and then perform the analysis on various water parameters which is costly and time-consuming process. The timely information about water quality is thus unavailable to the people in the river basin area. This creates a perfect opportunity for swift real-time water quality check through analysis of water samples collected from the river Krishna. IoT is one of the ways with which real-time monitoring of water quality of river Krishna can be done in quick time. In this paper, we have emphasized on IoT-based water quality monitoring by applying the statistical analysis for the data collected from the river Krishna. One-way analysis of variance (ANOVA) and two-way ANOVA were applied for the data collected, and found that one-way ANOVA was more effective in carrying out water quality analysis. The hypotheses that are drawn using ANOVA were used for water quality analysis. Further, these analyses can be used to train the IoT system so that it can take the decision whenever there is abnormal change in the reading of any of the water quality parameters.


Author(s):  
L. Kurhanevych ◽  
M. Shipka

The tasks of hydroecological monitoring of river-basin system have been justified. The analysis of the system of the monitoring studies in Poltva river basin has been made. The main problems in the functioning of the regional monitoring network have been determined. Key words: hydroecological monitoring, river-basin system, water quality.


Author(s):  
Yaroslaw Ilchyshyn

The work is devoted to investigation of water quality using bioindicators benthic organisms. Methods of bioindicators in researches of headwaters of Prut and Chornyy Cheremosh Rivers were proved and tested. Comprehensive study of water quality of mountain streams was conducted for five years. Changes in water quality, trends and the reasons for their occurrence were revealed during the analysis. Based on these results recommendations for improving of geoecological situation in the rivers basin were developed. Key words: water quality, bioindication, geoecology, indices of quality, monitoring, pollution.


1989 ◽  
Vol 21 (12) ◽  
pp. 1877-1880 ◽  
Author(s):  
S. Saito ◽  
K. Hattori ◽  
T. Okumura

Outflows of organic halide precursors (OXPs) from forest regions were studied in relation to water quality monitoring in the Yodo River basin. Firstly, the contribution of outflows from forest regions relative to the total was roughly estimated. Then equations for flows of these substances were formulated, divided into four different subflow categories: precipitation; throughfall; surface soil layer; and, deep soil layer. Finally, annual outflow loads were calculated for a test forest area.


2021 ◽  
Vol 11 (8) ◽  
Author(s):  
C. Prakasam ◽  
R. Saravanan ◽  
M. K. Sharma ◽  
Varinder S. Kanwar

AbstractAs the surface water in northern India is the main water resource for regional economic and also supply for drinking and irrigation purposes. However, deficiency of water quality leads to serious water pollution in the Pandoh river basin (PRB). Therefore, the main objective of the present study is to evaluate the quality of surface water. With this objective, surface water samples were collected from the PRB of northern India, and analyzed for pH, EC, turbidity, alkalinity, total dissolved solids, and total hardness. Moreover, geographical information system (GIS) tools were used to prepare the geology, drainage pattern, and location maps of the study region. Surface water quality observed from the PRB has an alkaline nature with a moderately hard type. Further studies are encouraged to better understand the water quality in northern India.


2014 ◽  
Vol 12 (2) ◽  
pp. 103-109 ◽  
Author(s):  
Yilei Yu ◽  
Xianfang Song ◽  
Yinghua Zhang ◽  
Fandong Zheng ◽  
Licai Liu

2021 ◽  
Vol 261 ◽  
pp. 04023
Author(s):  
Xu He ◽  
Hou Siyan

The water quality of six important rivers in Haihe River Basin, including Yongding River, Luanhe River, North Canal, Daqing River, South Canal and Chaobai River, was evaluated. The influence of point source and non-point source on water quality was analyzed. The causes of water environmental pollution in the major rivers were preliminarily revealed. The results show that the water quality of Chaobai River is good, and the impact of point source and non-point source discharge on the water body is small. Other rivers are affected by different degrees of point source and non-point source pollution. Based on the analysis results, the engineering measures and management countermeasures for river regulation are put forward.


Sign in / Sign up

Export Citation Format

Share Document