A Study on the Factors Affecting Students from Multicultural Families Underachieving and Maladjustment to School : Focusing on Areas with High Concentration of Migrants

2020 ◽  
Vol 9 (4) ◽  
pp. 165-184
Author(s):  
InJe Cho ◽  
◽  
DaYoung Kim ◽  
MyungGi Hong
2019 ◽  
Vol 100 (4) ◽  
pp. 1340-1349
Author(s):  
Jaime A Collazo ◽  
Matthew J Krachey ◽  
Kenneth H Pollock ◽  
Francisco J Pérez-Aguilo ◽  
Jan P Zegarra ◽  
...  

AbstractEffective management of the threatened Antillean manatee (Trichechus manatus manatus) in Puerto Rico requires reliable estimates of population size. Estimates are needed to assess population responses to management actions, and whether recovery objectives have been met. Aerial surveys have been conducted since 1976, but none adjusted for imperfect detection. We summarize surveys since 1976, report on current distribution, and provide population estimates after accounting for apparent detection probability for surveys between June 2010 and March 2014. Estimates in areas of high concentration (hotspots) averaged 317 ± 101, three times higher than unadjusted counts (104 ± 0.56). Adjusted estimates in three areas outside hotspots also differed markedly from counts (75 ± 9.89 versus 19.5 ± 3.5). Average minimum island-wide estimate was 386 ± 89, similar to the maximum estimate of 360 suggested in 2005, but fewer than the 700 recently suggested by the Puerto Rico Manatee Conservation Center. Manatees were more widespread than previously understood. Improving estimates, locally or island-wide, will require stratifying the island differently and greater knowledge about factors affecting detection probability. Sharing our protocol with partners in nearby islands (e.g., Cuba, Jamaica, Hispaniola), whose populations share genetic make-up, would contribute to enhanced regional conservation through better population estimates and tracking range expansion.El manejo efectivo del manatí antillano amenazado en Puerto Rico requiere estimados de tamaños de poblaciónes confiables. Dichas estimaciones poblacionales son necesarias para evaluar las respuestas a las acciones de manejo, y para determinar si los objetivos de recuperación han sido alcanzados. Se han realizado censos aéreos desde 1976, pero ninguno de ellos han sido ajustados para detecciones imperfectas. Aquí resumimos los censos desde 1976, actualizamos la distribución, y reportamos los primeros estimados poblacionales ajustados para la probabilidad de detección aparente en los censos de Junio 2010 a Marzo 2014. Las estimaciones poblacionales en áreas de mayor concentración del manatí promedió 317 ± 103, tres veces más abundante que los conteos sin ajuste (104 ± 0.56). Las estimaciones poblacionales en tres áreas fuera de las áreas de mayor concentración del manatí también fueron marcadamente diferentes (75 ± 9.89 vs 19.5 ± 3.5). El estimado mínimo poblacional en la isla entera fue de 386 ± 89, similar al estimado máximo de 360 sugerido en el año 2005, pero menor a los 700 sugeridos recientemente por el Centro de Conservación de Manatíes de Puerto Rico. Documentamos que el manatí tiene una distribución más amplia de lo que se sabía con anterioridad. El mejoramiento de los estimados poblacionales locales o a nivel de isla requerirá que se estratifique a la isla en forma diferente y que se investiguen los factores que influencian a la probabilidad de detección. Compartir protocolos como este con colaboradores de islas vecinas (por. ej., Cuba, Jamaica, Española), cuyas poblaciones de manatíes comparten material genético, contribuiría a la conservación regional mediante mejores estimaciones poblacionales y monitoreo de la expansión de su ámbito doméstico.


2021 ◽  
Vol 901 ◽  
pp. 111-116
Author(s):  
Nuttawut Supachawaroj ◽  
Sucharat Limsitthichaikoon

Dry socket disease, a pocket wound caused by the tooth extraction that resulted in severe acute pain which requires a topical analgesic with rapidly pain reduction and suppress the pain until the wound healed. This study aimed to investigate factors affecting gelation temperature and gelation time of lidocaine hydrochloride (LH)-loaded polyelectrolyte complex (PEC) thermosensitivity gel for treating dry socket wound. The first factor was investigated the effects of the ratio of three different types of polymers as chitosan (CS), hyaluronic acid (HA) and poloxamer407 (P407) on the phase transition caused by temperature. The second factor was examined the effects of gel preparation methods. The results showed that increasing concentration of the cationic polymer as CS induced the separation of the solution to gel (sol-to-gel) system due to the charge of CS and the charge of PEC. The ratio of HA:P407 affected the gel forming which high concentration of P407 reduced the gelation temperature while low concentration of HA disturbed the sol-to-gel state causing coagulation. The viscosity, spreadability, and swelling were significantly increased due to the concomitant increased in each polymer, HA and P407. The particle of the formulation observed under microscope was found to be less than 1 µm. Phase inversion from sol-to-gel was found after a min at 23°C. Since gelation temperature of the purposed formula is supposed to form gel below 37°C within a short period of injection. The results of the study indicate the suitable sol-to-gel forming in the appropriate temperature and time which should be used for further investigation in the efficacy and safety.


2010 ◽  
Vol 99 (12) ◽  
pp. 4812-4829 ◽  
Author(s):  
Sandeep Yadav ◽  
Steven J. Shire ◽  
Devendra S. Kalonia

1968 ◽  
Vol 35 (1) ◽  
pp. 31-47 ◽  
Author(s):  
J. F. Hayes ◽  
Pamela M. Southby ◽  
L. L. Muller

SummaryThe physical effects of various cations in caseinate dispersions of high concentrations were investigated over a range of temperature and pH.With calcium and strontium the temperature-viscosity relationships of the caseinates were abnormal in that the viscosity decreased rapidly from 30 to about 40 °C and a gel formed at temperatures in the region of 50–60 °C. On cooling, the gel reliquefied. No gel formed with barium, aluminium or magnesium. On cooling, magnesium preparations separated into 2 phases.The supernatant phase from the magnesium caseinate and a corresponding phase prepared by centrifuging the calcium caseinate showed depletion of α-casein and enrichment of κ-casein and β-casein. The supernatant phase from the calcium caseinate showed the reversible gel formation on heating. The magnesium supernatant phase did not. κ-Casein and a mixture of κ- and β-caseins gave reversible gels at similar levels of calcium and pH.For reversible gel formation to occur, calcium caseinate was required to be in fairly high concentration, to have a calcium content of about 1·0% of the protein and to be within the pH limits 5·2–6·0. The temperature at which gelation occurred was affected by the concentration of calcium and protein and by pH.The behaviour of the material was compared with that of methyl cellulose with and without addition of urea.Some potential commercial applications of the findings on viscosity relationships are outlined.


2015 ◽  
Vol 23 (1) ◽  
pp. 44-65 ◽  
Author(s):  
Muhammad Iqbal ◽  
Altaf Ahmad ◽  
M.K.A. Ansari ◽  
M.I. Qureshi ◽  
Ibrahim M. Aref ◽  
...  

Plants are able to extract metal(loid) contaminants from the soil or water through their roots and translocate them to harvestable aerial shoots. Of late, this plant potential has been used as a phytotechnology, termed as phytoextraction, for cleaning contaminated sites, and this process has successfully removed elements like As, Cd, Cu, Ni, and Pb, among others. Exploring plants with high metal-accumulation capacity, as well as engineering new hyperaccumulators, is a need of the hour. It is assumed that hyperaccumulators have a >1 shoot:root metal-accumulation ratio, which they achieve by way of (i) overexpression of transport systems for improved sequestration, (ii) tissue-specific protein expression, and (iii) high concentration of metal chelators. Unlike nonhyperaccumulators, the hyperaccumulating species normally bind metal ions to weak oxygen ligands and use strong ligands only for transient binding during transport to storage sites. Adequate understanding of genetics, biochemistry, and molecular biology of metal accumulation is a prelude to developing transgenics with improved phytoremediation capacity. Current research in plant breeding, genomics, and proteomics suggest promising leads to the creation of “remediation” cultivars. Several transporter genes associated with metal uptake, transport, and accumulation have been identified. Efforts are underway to enhance the phytoextraction capacity of relevant species, not only by using chelating agents but also by attempting hybridization, protoplast fusion, as well as genetic engineering through novel gene transfer, overexpression of genes, and (or) reverse gene insertion, to enhance (i) transpiration rate; (ii) uptake, translocation, and metabolism of metals; (iii) activity of enzymes related to rate-limiting steps; and (iv) transformation of accumulated metal to volatile forms, and (or) silencing gene(s) that encode proteases. Genome evolution in hyperaccumulators needs to be understood through a systematic study of ecological and molecular genomics. Sequencing of a complete genome of hyperaccumulators can help in identifying the promising functional noncoding regions in the genome, thus making the experimental analysis more accurate. In addition to the constitutive overexpression of a single gene, simultaneous expression of several genes in specific cellular components has to be focused. Other areas that require expert attention include identification of metal-transporter proteins and the introduction of genes encoding the metal transporters, overexpression of metallothioneins and phytochelatin synthase, and overproduction of nicotianamine and histidine in plants. A comprehensive study of transgenic gene frequency, covering several plant generations growing on polluted as well as nonpolluted soils, may assess the possibility of gene escape into the environment and its transfer to the microorganisms present in the surroundings. This review attempts not only to collect and collate information available on mechanisms of metal accumulation and detoxification in plants and on the factors affecting the tolerance and phytoextraction capacity of plants but also the strategies that have been or can be devised for raising novel plant genotypes with elevated capacity of metal accumulation and toxicity tolerance.


2013 ◽  
Vol 652-654 ◽  
pp. 1692-1695 ◽  
Author(s):  
Fu Bao Li ◽  
Tao Lin ◽  
Qin Li ◽  
Liang Li ◽  
Hao Wu

Starting with the research of the mechanism of treating organic wastewater, this paper found out various factors affecting electrode reaction, generation of hydroxyl free radical and flocculation reaction and the conditions promoting reinforcement of reaction, then associating with the advantage features of cavitation and impinging stream technology for degrading wastewater, it developed the "cavitation and impinging stream microelectrolysis technology", designed a novel structure of cavitation and impinging stream microelectrolysis reactor. In the technique of treating high concentration organic wastewater using microelectrolysis method, the problems of passivation and hardening can be solved by using this reactor with the features of high efficiency, environmental protection, safety, and good economics etc.


2014 ◽  
Vol 59 (3) ◽  
pp. 721-730 ◽  
Author(s):  
Maciej Zajączkowski ◽  
Zbigniew Kasztelewicz ◽  
Mateusz Sikora

Abstract The construction of a surface mine always involves the necessity of accessing deposits through the removal of the residual overburden above. In the beginning phase of exploitation, the masses of overburden are located outside the perimeters of the excavation site, on the external dump, until the moment of internal dumping. In the case of lignite surface mines, these dumps can cover a ground surface of several dozen to a few thousand hectares. This results from a high concentration of lignite extraction, counted in millions of Mg per year, and the relatively large depth of its residual deposits. Determining the best place for the location of an external dump requires a detailed analysis of existing options, followed by a choice of the most favorable one. This article, using the case study of an open-cast lignite mine, presents the selection method for an external dump location based on graph theory and the A-star algorithm. This algorithm, based on the spatial distribution of individual intersections on the graph, seeks specified graph states, continually expanding them with additional elementary fields until the required surface area for the external dump - defined by the lowest value of the occupied site - is achieved. To do this, it is necessary to accurately identify the factors affecting the choice of dump location. On such a basis, it is then possible to specify the target function, which reflects the individual costs of dump construction on a given site. This is discussed further in chapter 3. The area of potential dump location has been divided into elementary fields, each represented by a corresponding geometrical locus. Ascribed to this locus, in addition to its geodesic coordinates, are the appropriate attributes reflecting the degree of development of its elementary field. These tasks can be carried out automatically thanks to the integration of the method with the system of geospatial data management for the given area. The collection of loci, together with geodesic coordinates, constitutes the points on the graph used during exploration. This is done using the A-star algorithm, which uses a heuristic function, allowing it to identify the optimal solution; therefore, the collection of elementary fields, which occupy the potential construction area of a dump, characterized by the lowest value representing the cost of occupation and dumping of overburden in the area. The precision of the boundary, generated by the algorithm, is dependent on the established size of the elementary field, and should be refined each time by the designer of the surface mine. This article presents the application of the above method of dump location using the example of “Tomisławice,” a lignite surface mine owned by PAK KWB Konin S. A. The method made it possible to identify the most favorable dump location on the northeast side of the initial pit, within 2 kilometers of its surrounding area (discussed further in chapter 3). This method is universal in nature and, after certain modifications, can be implemented for other surface mines as well.


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1159 ◽  
Author(s):  
Jin-Yeo Byun ◽  
Hekap Kim ◽  
Young-Ji Han ◽  
Sang-Deok Lee ◽  
Sung-Won Park

High particulate matter (PM2.5) concentrations have been considered a serious environmental issue in South Korea. Recent studies have focused mostly on metropolitan and industrial cities; however, high PM2.5 episodes have also been frequently observed even in small– and middle-sized cities. Thus, in this study, PM2.5 and its major chemical components were measured in a small residential city with low anthropogenic emissions for 2 years to identify the factors affecting the PM2.5 concentrations. Overall, the average PM2.5 concentration was 29.4 μg m−3: about two times higher than the annual ambient air quality standard value. In winter, when the PM2.5 concentrations were generally higher, relative humidity (RH) was significantly correlated with both PM2.5 mass and the PM2.5/PM10 ratio, suggesting that high RH promoted the formation of secondary PM2.5. In addition, SO42−and NO3− were found to be correlated with both NH4+ and K+ in winter, indicating that biomass burning was an important source in this city. Water-soluble organic carbon (WSOC) was also highly correlated with elemental carbon (EC) and K+ in fall and winter, when the burning of agricultural residues actively occurred. During high concentration episodes, NO3− exhibited the highest increase; nevertheless, other components (e.g., K+ and organic carbon) also significantly increased.


2018 ◽  
Vol 143 ◽  
pp. 03011
Author(s):  
Kirill Kurgan ◽  
Vasily Klimenov ◽  
Anatoly Klopotov ◽  
Sergey Gnyusov ◽  
Yuri Abzaev ◽  
...  

This paper presents the results of structural studies for a welded joint of the Grade 2 titanium alloy in submicrocrystalline and microcrystalline states produced by electron beam welding when joining 2-mm-thick plates. Microhardness distribution patterns of the Grade-2 titanium alloy in micro- and submicrocrystalline states are identified in the weld zone and heat-affected zone. These patterns reflect a difference in structural phase states. It is assumed that one of the key factors affecting both the structural state and microhardness distribution in the weld zone and heat-affected zone during electron-beam welding is high concentration of oxygen atoms embedded into the crystal lattice of α–Ti-based solid solution.


Sign in / Sign up

Export Citation Format

Share Document