scholarly journals Utilization of Peanut Shell Waste (Arachis hypogaea) As a Growth Media for Probiotic Bacteria Streptococcus thermophiles

2019 ◽  
Vol 3 (2) ◽  
pp. 186-192
Author(s):  
Suwasdi Suwasdi ◽  
Mahdalina Mursilati ◽  
Surya Bagus ◽  
Monica Sonia Indri Pradipta ◽  
Esna Dilli Novianto
Author(s):  
Preetha Ganguly ◽  
Shubhalakshmi Sengupta ◽  
Papita Das ◽  
Avijit Bhowal

2010 ◽  
Author(s):  
Roni Shapira ◽  
Judith Grizzle ◽  
Nachman Paster ◽  
Mark Pines ◽  
Chamindrani Mendis-Handagama

T-2 toxin, a toxic product belongs to the trichothecene mycotoxins, attracts major interest because of its severe detrimental effects on the health of human and farm animals. The occurrence of trichothecenes contamination is global and they are very resistant to physical or chemical detoxification techniques. Trichothecenes are absorbed in the small intestine into the blood stream. The hypothesis of this project was to develop a protecting system using probiotic bacteria that will express trichothecene 3-O-acetyltransferase (Tri101) that convert T-2 to a less toxic intermediate to reduce ingested levels in-situ. The major obstacle that we had faced during the project is the absence of stable and efficient expression vectors in probiotics. Most of the project period was invested to screen and isolate strong promoter to express high amounts of the detoxify enzyme on one hand and to stabilize the expression vector on the other hand. In order to estimate the detoxification capacity of the isolated promoters we had developed two very sensitive bioassays.The first system was based on Saccharomyces cerevisiae cells expressing the green fluorescent protein (GFP). Human liver cells proliferation was used as the second bioassay system.Using both systems we were able to prove actual detoxification on living cells by probiotic bacteria expressing Tri101. The first step was the isolation of already discovered strong promoters from lactic acid bacteria, cloning them downstream the Tri101 gene and transformed vectors to E. coli, a lactic acid bacteria strain Lactococcuslactis MG1363, and a probiotic strain of Lactobacillus casei. All plasmid constructs transformed to L. casei were unstable. The promoter designated lacA found to be the most efficient in reducing T-2 from the growth media of E. coli and L. lactis. A prompter library was generated from L. casei in order to isolate authentic probiotic promoters. Seven promoters were isolated, cloned downstream Tri101, transformed to bacteria and their detoxification capability was compared. One of those prompters, designated P201 showed a relatively high efficiency in detoxification. Sequence analysis of the promoter region of P201 and another promoter, P41, revealed the consensus region recognized by the sigma factor. We further attempted to isolate an inducible, strong promoter by comparing the protein profiles of L. casei grown in the presence of 0.3% bile salt (mimicking intestine conditions). Six spots that were consistently overexpressed in the presence of bile salts were isolated and identified. Their promoter reigns are now under investigation and characterization.


Author(s):  
N Hongsriphan ◽  
P Kamsantia ◽  
P Sillapasangloed ◽  
S Loychuen

2010 ◽  
Author(s):  
Ting Zhou ◽  
Roni Shapira ◽  
Peter Pauls ◽  
Nachman Paster ◽  
Mark Pines

The trichothecene deoxynivalenol (DON, vomitoxin), one of the most common mycotoxin contaminants of grains, is produced by members of the Fusarium genus. DON poses a health risk to consumers and impairs livestock performance because it causes feed refusal, nausea, vomiting, diarrhea, hemolytic effects and cellular injury. The occurrence of trichothecenes contamination is global and they are very resistant to physical or chemical detoxification techniques. Trichothecenes are absorbed in the small intestine into the blood stream. The overall objective of this project was to develop a protecting system using probiotic bacteria that will express trichothecene 3-O-acetyltransferase (Tri101) that convert T-2 to a less toxic intermediate to reduce ingested levels in-situ. The major obstacle that we had faced during the project is the absence of stable and efficient expression vectors in probiotics. Most of the project period was invested to screen and isolate strong promoter to express high amounts of the detoxify enzyme on one hand and to stabilize the expression vector on the other hand. In order to estimate the detoxification capacity of the isolated promoters we had developed two very sensitive bioassays.The first system was based on Saccharomyces cerevisiae cells expressing the green fluorescent protein (GFP). Human liver cells proliferation was used as the second bioassay system.Using both systems we were able to prove actual detoxification on living cells by probiotic bacteria expressing Tri101. The first step was the isolation of already discovered strong promoters from lactic acid bacteria, cloning them downstream the Tri101 gene and transformed vectors to E. coli, a lactic acid bacteria strain Lactococcuslactis MG1363, and a probiotic strain of Lactobacillus casei. All plasmid constructs transformed to L. casei were unstable. The promoter designated lacA found to be the most efficient in reducing T-2 from the growth media of E. coli and L. lactis. A prompter library was generated from L. casei in order to isolate authentic probiotic promoters. Seven promoters were isolated, cloned downstream Tri101, transformed to bacteria and their detoxification capability was compared. One of those prompters, designated P201 showed a relatively high efficiency in detoxification. Sequence analysis of the promoter region of P201 and another promoter, P41, revealed the consensus region recognized by the sigma factor. We further attempted to isolate an inducible, strong promoter by comparing the protein profiles of L. casei grown in the presence of 0.3% bile salt (mimicking intestine conditions). Six spots that were consistently overexpressed in the presence of bile salts were isolated and identified. Their promoter reigns are now under investigation and characterization.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
N. F. Sylla ◽  
N. M. Ndiaye ◽  
B. D. Ngom ◽  
D. Momodu ◽  
M. J. Madito ◽  
...  

Abstract In this study, the synthesis of porous activated carbon nanostructures from peanut (Arachis hypogea) shell waste (PSW) was described using different porosity enhancing agents (PEA) at various mass concentrations via a two-step process. The textural properties obtained were depicted with relatively high specific surface area values of 1457 m2 g−1, 1625 m2 g−1 and 2547 m2 g−1 for KHCO3, K2CO3 and KOH respectively at a mass concentration of 1 to 4 which were complemented by the presence of a blend of micropores, mesopores and macropores. The structural analyses confirmed the successful transformation of the carbon-containing waste into an amorphous and disordered carbonaceous material. The electrochemical performance of the material electrodes was tested in a 2.5 M KNO3 aqueous electrolyte depicted its ability to operate reversibly in both negative and positive potential ranges of 0.90 V. The activated carbon obtained from the carbonized CPSW:PEA with a mass ratio of 1:4 yielded the best electrode performance for all featured PEAs. The porous carbons obtained using KOH activation displayed a higher specific capacitance and the lower equivalent series resistance as compared to others. The remarkable performance further corroborated the findings linked to the textural and structural properties of the material. The assembled device operated in a neutral electrolyte (2.5 M KNO3) at a cell potential of 1.80 V, yielded a ca. 224.3 F g−1 specific capacitance at a specific current of 1 A g−1 with a corresponding specific energy of 25.2 Wh kg−1 and 0.9 kW kg−1 of specific power. This device energy was retained at 17.7 Wh kg−1 when the specific current was quadrupled signifying an excellent supercapacitive retention with a corresponding specific power of 3.6 kW kg−1. These results suggested that peanut shell waste derived activated carbons are promising candidates for high-performance supercapacitors.


2015 ◽  
Vol 79 ◽  
pp. 45-50 ◽  
Author(s):  
Jurarat Nisamaneenate ◽  
Duangduen Atong ◽  
Panchaluck Sornkade ◽  
Viboon Sricharoenchaikul

Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2310
Author(s):  
Carolyne Kipkoech ◽  
John N. Kinyuru ◽  
Samuel Imathiu ◽  
Victor Benno Meyer-Rochow ◽  
Nanna Roos

In this study, cricket chitosan was used as a prebiotic. Lactobacillus fermentum, Lactobacillus acidophilus, and Bifidobacterium adolescentis were identified as probiotic bacteria. Cricket chitin was deacetylated to chitosan and added to either De Man Rogosa and Sharpe or Salmonella/Shigella bacterial growth media at the rates of 1%, 5%, 10%, or 20% to obtain chitosan-supplemented media. The growth of the probiotic bacteria was monitored on chitosan-supplemented media after 6, 12, 24, and 48 h upon incubation at 37 °C. Growth of Salmonella typhi in the presence of probiotic bacteria in chitosan-supplemented media was evaluated under similar conditions to those of the growth of probiotic bacteria by measuring growth inhibition zones (in mm) around the bacterial colonies. All chitosan concentrations significantly increased the populations of probiotic bacteria and decreased the populations of pathogenic bacteria. During growth, there was a significant pH change in the media with all probiotic bacteria. Inhibition zones from probiotic bacteria growth supernatant against Salmonella typhi were most apparent at 16 mm and statistically significant in connection with a 10% chitosan concentration. This study suggests cricket-derived chitosan can function as a prebiotic, with an ability to eliminate pathogenic bacteria in the presence of probiotic bacteria.


Sign in / Sign up

Export Citation Format

Share Document